Existing Conditions - Ward Street ROW

Pedestrian Environment

- Ward Street currently has inconsistent pedestrian facilities with a mixture of sidewalk and paved boulevard.
- The environment is not pedestrian friendly there s limited buffer between the road and pedestrian facilities; the paved boulevard is used for parking as well as walking; there are numerous wide commercial entrances with no clear sidewalk through them.

Main Street Function

 In addition to its arterial status as County Road, Ward Street must function as the "main street" in Bridgenorth, to provide access to homes and businesses.

Existing Conditions - Ward Street ROW

Right-of-way (ROW) Constraints

- The Ward Street ROW is constrained with a minimum width of 18.5 m in places. The narrow R.O.W. limits the extent of road widening possible.
- Several properties along the corridor have minimal setback form the ROW, making grading changes difficult.
- Existing road surface (asphalt pavement) reaching end of life; last reconstructed in 1979

Utilities

- The corridor has overhead and underground utilities that must be accommodated with any changes to the cross section.
- Overhead hydro will need to be relocated underground to facilitate widening and meet current hydro safety requirements.

Existing Traffic Conditions

Traffic Volumes & Capacity

- Traffic volume on Ward Street is approaching the capacity for a two-lane road based on 2017 traffic data.
- Additional capacity will be required to prevent excessive delays.

Traffic Operations

Turning movements to/from side streets and commercial entrances experience significant delays during peak
periods due to high volumes in the corridor.

On-Street Parking

 Paved boulevards throughout the village provide extensive opportunities for on-street parking. However, observations during the study period indicate this parking is seldom used as there is ample parking in commercial properties.

Traffic Analysis

Improving corridor capacity and levels of service is one of the primary objectives for this study. A comprehensive traffic forecasting and analysis program is being completed as part of the study. The detailed traffic analysis will:

- Identify peak traffic volumes and turning movements for Ward Street for 2017.
- Forecast future traffic volumes and turning movements for the corridor to 2031.
- Analyze the corridor to determine capacity and levels of service for 2017 and 2031 to identify deficiencies.
- Analyze various design alternatives to determine which alternative best addresses capacity issues.

2017/2031 Traffic Forecasts

- The diagram at right shows the 2017 and 2031 traffic volumes for the corridor including turning movements at intersections.
- 2013 summer peak hour periods (weekday p.m. and Saturday) were selected as the base year, based on the data available.
- A traffic count program was completed in the spring of 2017 to collect additional data.
- An annual growth rate was calculated based on the data from the County's 2031 traffic model.
- The background data was expanded at the annual growth rate to provide 2017 summer p.m. and Saturday peak hour volumes.
- The 2017 data was similarly expanded to produce 2031 p.m. and Saturday peak hour volumes.

2017 and 2031 Traffic Volumes

2017/2031 Traffic Volumes

- A traffic model of the Ward Street corridor was created using Synchro software.
- The model was used to analyze Ward Street and all intersections to determine how they perform.
- Intersection performance is quantified by Levels of Service (LOS), which range from A to F (See Table).

CAPACITY ANALYSES

2017 PM Peak Existing and (2031 PM Peak Do Nothing)

CAPACITY ANALYSES

2017 SAT Peak Existing and (2031 SAT Peak Do Nothing)

Level of Service	Average Control Delay (seconds/vehicle)
Α	0 – 10
В	>10 – 15
С	>15 – 25
D	>25 – 35
Е	>35 – 50
F ¹	>50
	ortation Research Board, 2010. .0, LOS F is assigned an individual lane group for all unsignali way stop-controlled intersections. Overall intersection LOS is

- The analysis indicates that by 2031 many intersections within the corridor will operate at or below LOS 'D'.
- Some improvements are required to maintain LOS beyond 2031.

Alternative Solutions

Alternative 1

 No change to existing Ward Street corridor

EXISTING WARD STREET CROSS SECTION FROM CHAMPLAIN RD. TO GORE ST.

- TWO 3.7m LANES SOUTHBOUND AND NORTHBOUND LANES
- EXISTING ASPHALT BOULEVARD PARKING BOTH SIDES
- EXISTING 1.2m CONCRETE SIDEWALK ON WEST SIDE ONLY

Alternative 2

Rehabilitate Existing Road & Incorporate CIP Elements

- No widening or additional lanes
- Existing pavement would be rehabilitated
- CIP elements would be constructed including sidewalks and streetscaping

CIP INITIATIVES & PAVEMENT REHABILITATION FROM CHAMPLAIN RD. TO GORE ST. WITH CONCRETE SIDEWALK ON BOTH SIDES

- TWO 3.7m LANES SOUTHBOUND AND NORTHBOUND LANES
- COMMUNITY IMPROVEMENT SPACE ON BOTH SIDES
- NEW 1.5m CONCRETE SIDEWALK ON BOTH SIDES

PAVEMENT REHABILITATION - 50mm MILL & PAVE

NO ON STREET PARKING BOULEVARD

Alternative 2A
Rehabilitation, CIP and Causeway
Link (Bridgenorth By-Pass)

 Same scope as Alternative 2 however construct Causeway Link (Bridgenorth By-Pass) to provide capacity

WITH CONCRETE SIDEWALK ON BOTH SIDES
 THREE LANES - SOUTHBOUND(3.9m), NORTHBOUND(3.9m)

- AND TURNING(3.4m) LANES
 COMMUNITY IMPROVEMENT SPACE ON BOTH SIDES
- NEW 1.5m CONCRETE SIDEWALK ON WEST SIDE
- NEW 1.8m CURB FACED CONCRETE SIDEWALK ON EAST SIDE
- PAVEMENT REHABILITATION 50mm MILL & PAVE

ALTERNATIVE SOLUTIONS

Alternative 3

3 Lane Cross Section

- Reconstruct Ward Street from Champlain Road to Gore Street to provide 3-lane cross section throughout study area
- Incorporate elements of CIP

3 LANE CROSS SECTION - 3.5m LANES WITH CONCRETE SIDEWALK AND COMMUNITY IMPROVEMENT SPACE ON BOTH SIDES

- THREE 3.5m LANES SOUTHBOUND, NORTHBOUND AND TURNING LANES
- COMMUNITY IMPROVEMENT SPACE ON BOTH SIDES
- NEW 1.5m CONCRETE SIDEWALK ON BOTH SIDES
- NEW ASPHALT THROUGHOUT
- NEW BARRIER CURB
- NO ON STREET PARKING

Alternative 4 Four-Lane Cross Section

- Reconstruct entire corridor from Champlain Road to Causeway to provide 4 lanes (2 in each direction)
- Provide limited CIP elements (reduced space due to road widening)

4 LANE CROSS SECTION - 3.5m LANES WITH CONCRETE SIDEWALK AND COMMUNITY IMPROVEMENT SPACE ON BOTH SIDES

- FOUR 3.5m LANES TWO SOUTHBOUND & TWO NORTHBOUND LANES
- COMMUNITY IMPROVEMENT SPACE ON BOTH SIDES
- NEW 1.5m CONCRETE SIDEWALK ON BOTH SIDES
- NEW ASPHALT THROUGHOUT
- NEW BARRIER CURB
- NO ON STREET PARKING
- PROPERTY ACQUISITION REQUIRED FROM CHAMPLAIN RD. TO GORE ST.

Alternative 5 Five-Lane Cross Section

- Reconstruct entire corridor from Champlain Road to Causeway to provide 5 lane cross section (2 through lanes and centre turn lane)
- Insufficient space for sidewalks or CIP elements

Evaluation Criteria

Each alternative solution will be evaluated against the following criteria.

Natural Environment

- Water quality/quantity impacts to Chemong Lake
- Loss of green space/vegetation communities within the Corridor
- Impact to air quality and noise levels

Social/Cultural

- Impact to public spaces
- Extent of property acquisition and/or disturbance to private property
- Pedestrian and cycling opportunities within the corridor
- Impacts to heritage resources in corridor

Economic

- Capital cost of improvements
- Property acquisition costs
- Utility relocation costs
- Economic impact on local economy
- Construction timing, schedule and phasing

Technical

- Does it satisfy problem statement
- Degree of improvement in through traffic capacity of corridor
- Improvement in traffic operations (access to/from side streets and businesses)
- Safety of pedestrians and motorists
- Impact on parking within the corridor

Next Steps

- The Study Team will review all comments and suggestions from the stakeholders
- Alternatives will be screened against the evaluation criteria and a preliminary preferred alternative identified
- Detailed traffic analysis will be completed for all alternatives
- Design alternatives will be refined and evaluated and a preferred solution identified
- PIC #2 will be held to present the preferred solution

How can you comment and/ or stay involved in the project?

- Fill in a comment sheet and leave it in the comment box, or email comments directly to project contacts below
- Comments should be provided by October 6, 2017

Questions?

If you have questions about the project, please contact:

Chris Bradley

Director of Public Works, County of Peterborough

470 Water Street

Peterborough, ON K9H 3M3

Tel: 705-775-2737, ext. 3102

Email: cbradley@ptbocounty.ca

Paul Hurley, P.Eng.

Consultant Project Manager, Engage Engineering Ltd.

171 King St, Suite 120

Peterborough, ON K9J 2R8

Tel: 705-755-0427, ext. 200

Email: paul@engageeng.ca

coming!

