PHASE II ENVIRONMENTAL SITE ASSESSMENT

OF

1382 COUNTY ROAD 28 FRASERVILLE, ONTARIO

Prepared For:

RIC (KDL) Inc.

Attention: Richard Weldon

Prepared By:

Trafalgar Environmental Consultants

P.O. Box 93316 Yonge Street Newmarket, Ontario L3X 1A3

September 1, 2021

Trafalgar Project Number: KD

TABLE OF CONTENTS

1.0	EXEC	UTIVE SUMMARY	1
2.0	INTR	ODUCTION	4
2.1	BAG	CKGROUND	4
2.2		ECTIVE & SCOPE OF WORK	
2.3	API	PLICABLE REGULATIONS, STANDARDS, GUIDELINES	4
3.0		DESCRIPTION	
3.1		NERAL DESCRIPTION	
3.2	SIT	E CHARACTERISTICS	5
3	3.2.1	Bedrock and Surficial Geology	5
3	3.2.2	Topography	5
3	3.2.3	Surface Water and Groundwater	
4.0	APPL	ICABLE SITE CONDITION STANDARDS	5
5.0	PHAS	E II ESA METHODOLOGY	6
5.1	UTI	LITY/SERVICE LOCATES	6
5.2	BO	REHOLES, SOIL SAMPLING, FIELD SCREENING	7
5.3	МО	NITORING WELL CONSTRUCTION, DEVELOPMENT	8
5.4		OUNDWATER MONITORING, SAMPLING	
5.5	AN	ALYTICAL LABORATORY	9
5.6	QU	ALITY ASSURANCE/QUALITY CONTROL (QA/QC)	9
5.7		OJECT PERSONNEL	
6.0		LTS OF PHASE II ESA	
6.1	SOI	L SAMPLING	10
ϵ	5.1.1	Geologic Conditions	
ϵ	5.1.2	Field Observations and Measurements	10
6.2	GRO	OUNDWATER SAMPLING	10
ϵ	5.2.1	Field Observations and Measurements	10
6.3	LAI	BORATORY ANALYSIS	11
		Soil Samples	
	5.3.2	Groundwater Samples	
	5.3.3	Analytical Results	
7.0		RPRETATION & EVALUATION OF INFORMATION	
8.0	CONC	LUSIONS AND RECOMMENDATIONS	13
9.0	REFE	RENCES	16

LIST OF FIGURES

FIGURE 1 SITE LOCATION FIGURE 2 SITE PLAN

FIGURE 3 SOIL CHEMICAL ANALYSIS

VOC, PHC, Metals, PAHs, PCB

FIGURE 4 GROUNDWATER CHEMICAL ANALYSIS

VOC, PHC, Metals, PAHs, PCB

LIST OF APPENDICES

APPENDIX A GEOTECHNICAL BOREHOLE LOGS & SITE PLAN APPENDIX B BOREHOLE LOGS

APPENDIX C CERTIFICATES OF LABORATORY ANALYSIS

APPENDIX D QUALIFICATIONS OF THE ASSESSOR

APPENDIX E STATEMENT OF GENERAL CONDITIONS & LIMITATIONS

1.0 EXECUTIVE SUMMARY

Trafalgar Environmental Consultants (TEC) was retained by RIC (KDL) Inc. to conduct a Phase II ESA of the property identified as 1382 County Road 28, Fraserville, Ontario (referred to hereafter as "the site"). The objective of the Phase II ESA was to ascertain the presence of any subsurface environmental impact at the site that may have resulted from use of the site as a race track.

The Phase II ESA was conducted in a manner consistent with the information contained in CSA standard *Z769-00 Phase II Environmental Site Assessment* and selected portions of *Ontario Regulation 153/04 – Records of Site Condition, Part XV.1 of the Environmental Protection Act.* The Phase II ESA was not conducted in support of a Record of Site Condition.

Applicable Site Condition Standards

The applicable site condition standards selected for the subject property are contained within Table 2 of the Ontario Regulation 153/04 reference document *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (dated April 15, 2011). Table 2 is entitled "Full Depth Generic Site Condition Standards in a Potable Ground Water Condition." The applicable standards are for a potable groundwater condition, industrial/commercial/community property use, and coarse textured soils.

Phase II ESA Observations

The Phase II ESA consisted of advancing exterior boreholes at the subject property. Seven boreholes were advanced on August 9 between August 20, 2021. Five boreholes were implemented with a monitoring well upon completion. The borehole/monitoring well locations are presented on Figure 2. The boreholes penetrated the native soil. Field observations indicate that the native soils at the site consist primarily of silt.

All soil samples obtained from the borehole were inspected, using visual and olfactory senses, for any evidence of unusual staining and/or odours.

In addition to visual/olfactory observation, the soil samples were field tested for the presence of volatile organic vapours. The volatile vapour concentrations measured in the soil samples obtained from the boreholes ranged between 0 ppm (i.e. nondetectable) and 510 ppm.

Five of the advanced boreholes were implemented with a monitoring well for groundwater sampling. The installed wells were inspected for the presence of headspace volatile organic vapours, depth to groundwater, and the presence of free-phase liquid petroleum hydrocarbons.

Soil & Groundwater Sampling

A total of 13 soil samples representative of the soil conditions encountered in the boreholes, and 6 groundwater samples representative of the conditions encountered in the monitoring wells, were submitted for accredited laboratory analysis of one or more of the following site condition standards:

- Volatile organic compounds ("VOC")
- petroleum hydrocarbons ("PHC") fractions F1 through F4.
- Polycyclic aromatic hydrocarbons ("PAH")
- Polychlorinated biphenyls ("PCB")
- metals and inorganics

The results of these analyses were compared to the applicable 0.Reg. 153/04 Table 2 site condition standards to confirm/refute regulatory compliance.

Analytical Results

The analytical results for the soil samples were compared to the applicable O.Reg. 153/04 Table 2 site condition standards to verify regulatory compliance. This comparison indicated that the measured chemical concentrations in the soil samples submitted for laboratory analysis are **in compliance** with the applicable O.Reg. 153/04 Table 2 site condition standards for the chemical parameters analyzed, with the following exceptions:

The Sodium Absorption Ratio (SAR) measured in soil samples 104 15-17.5 and 209
 0-5 exceeded applicable Table 2 SCS.

The analytical results for the groundwater samples were compared to the applicable O.Reg. 153/04 Table 2 site condition standards to verify regulatory compliance. This comparison indicated that the measured chemical concentrations in the groundwater samples submitted for laboratory analysis are **in compliance** with the applicable O.Reg. 153/04 Table 2 site condition standards for the chemical parameters analyzed, with the following exceptions:

- The concentration of barium and sodium detected in groundwater sample BH103 exceeded the applicable Table 2 SCS (5530 ppb and 1 620 000 ppb vs. SCS of 1000 ppb and 490 000 ppb, respectively).
- The concentration of sodium detected in groundwater sample BH104 exceeds the applicable Table 2 SCS (1 570 000 ppb vs. SCS of 490 000 ppb).

Conclusions

The observations and measurements made during the soil and groundwater sampling segments of the Phase II ESA, and the results of the laboratory analysis for the soil and groundwater samples indicate that the current site conditions are not in compliance with the applicable O.Reg. 153/04 Table 2 SCS for ICC use for the parameters analyzed.

Based on the results of this investigation, it appears that the historical activities on the property have resulted in minor environmental impact to the property at 1382 County Road 28 in Fraserville, Ontario.

2.0 INTRODUCTION

2.1 BACKGROUND

Trafalgar Environmental Consultants (TEC) was retained by RIC (KDL) Inc. to conduct a Phase II ESA of the property identified as 1382 County Road 28, Fraserville, Ontario (referred to hereafter as "the site"). A Site Location Map is presented on Figure 1.

2.2 OBJECTIVE & SCOPE OF WORK

The objective of the Phase II ESA was to ascertain the presence of any subsurface environmental impact at the site that may have resulted from the use of the property as a race track.

The project objective was achieved through implementation of the following scope of work:

- Provide a detailed description of the subject property in order to determine the applicable regulatory site condition standards for the site based on available information.
- Conduct a subsurface drilling program (i.e. Phase II ESA) in order to ascertain the current soil and groundwater conditions.
- Submit representative soil and groundwater samples for qualified laboratory analysis of selected parameters. Compare the analytical results with the applicable site condition standards to confirm/refute general regulatory compliance.

2.3 APPLICABLE REGULATIONS, STANDARDS, GUIDELINES

Ontario Regulation 153/04 – Records of Site Condition, Part XV.1 of the Environmental Protection Act ("O.Reg. 153/04") defines the requirements for the completion of a Phase II ESA. Strict adherence to O.Reg. 153/04 is compulsory when a Record of Site Condition ("RSC") is required for a property. Since there will be no change in property use at the site, and the current assessment is for environmental due diligence purposes only, a RSC is not required as part of the current site work and O.Reg. 153/04 is not stringently applicable. The Phase II ESA and this report were not conducted in support of a RSC.

The Phase II ESA was conducted in accordance with generally accepted professional practices, CSA standard *Z769-00 Phase II Environmental Site Assessment* (CSA, 2000), *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* (MOE¹, 1996) and selected portions of *Ontario Regulation 153/04 – Records of Site Condition, Part XV.1 of the Environmental Protection Act.* The work included analytical testing of representative soil and groundwater samples obtained from boreholes and monitoring wells advanced during the Phase II ESA. The analytical results were compared with applicable O.Reg. 153/04 site condition standards to confirm/refute regulatory compliance.

3.0 SITE DESCRIPTION

3.1 GENERAL DESCRIPTION

The subject property is located in Fraserville, Ontario on the west side of County Road 28, north of Syer Line. The municipal address of the site is 1382 County Road 28, Fraserville, Ontario. The property has been used for approximately 50 years as a horse racing facility. Portions of the property have also been used for auto racing and a casino for many years. The buildings on the site include, a horse racing track, auto racing track, grandstand, casino, maintenance buildings and stables.

3.2 SITE CHARACTERISTICS

3.2.1 Bedrock and Surficial Geology

The bedrock in the area has been mapped as shale, limestone, dolostone, arkose and sandstone (Ontario Geological Survey, 1991).

The surficial geology in the immediate vicinity of the site has been mapped as predominantly silty clay and silt (Barnett et al., 1991). The native soil encountered at the site was sand.

3.2.2 Topography

The ground surface at the site and vicinity is relatively flat. (Canada Centre for Mapping, 1996).

3.2.3 Surface Water and Groundwater

No surface water was observed at the subject property. The nearest surface water to the subject property is an unnamed creek, which is located at the northwest corner of the subject property (Canada Centre for Mapping, 1996).

Six monitoring wells were installed at the site during this Phase II ESA. The depth to groundwater was measured to be between 1.06 and 1.83 metres grade in the installed monitoring wells.

The direction of groundwater flow at the site and vicinity is unknown.

4.0 APPLICABLE SITE CONDITION STANDARDS

O.Reg 153/04 provides two approaches for the assessment and restoration of sites in Ontario. These approaches consist of: 1) site condition standards comprised of background standards and effects-based standards (i.e. full depth generic and stratified), or 2) preparation of a risk assessment. The background and effects-based standards are set out in Tables 1 through 9 of the O.Reg. 153/04 reference document *Soil, Ground Water and*

Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MOE¹, April 15, 2011). Selection of the appropriate background/effects-based site condition standards is dependent upon several of variables, including intended property use, soil type, soil depth, soil pH, location of areas of natural significance, proximity to nearby surface water, and groundwater use. These variables were considered when selecting the applicable site condition standards for the subject property.

The applicable site condition standards ("SCS") selected for the site are contained within Table 2 of the O.Reg. 153/04 reference document *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (MOE¹, April 15, 2011). Table 2 is entitled "Full Depth Generic Site Condition Standards in a Potable Ground Water Condition." The applicable SCS are for a potable groundwater condition, industrial/commercial/community ("ICC") property use, and coarse textured soils. These SCS were selected based on the following rationale:

- The current and intended property use is "commercial." The intended property use is not "agricultural or other use".
- A full depth generic restoration approach was selected for the site.
- The native soil encountered at the site is silt.
- With respect to environmental sensitivity as defined in Section 41 of Ontario Regulation 153/04:
 - 1. The soil pH is expected to fall within the specified pH ranges (subject to confirmation).
 - 2. The property is not located within "an area of natural significance" as defined in O.Reg. 153/04 (subject to confirmation).
- O.Reg. 153/04 specifies a "shallow soil property" as a property of which 1/3 or more of the area has soil at a depth of 2 m or less. The soil encountered at the site extends to a depth greater than 2 m.
- The site is not located within 30 m of a permanent water body.
- Drinking water is supplied by water trucks.

Based on the information provided above, the O.Reg. 153/04 Table 2 potable Site Condition Standards (SCS) for Industrial/Commercial/Community (ICC) property use and coarse textured soils were selected as the applicable SCS for the subject property.

5.0 PHASE II ESA METHODOLOGY

5.1 UTILITY/SERVICE LOCATES

The locations of all overhead and underground utilities/services were determined prior to commencing work at the site. Ontario One Call, local hydro, and all other applicable

underground utility/service providers were contacted in order to obtain the requisite utility/service clearances. Additionally, a private service locator (i.e. Davidson Locates Inc.) was retained by TEC to verify that all borehole locations were clear of buried utilities/services.

5.2 BOREHOLES, SOIL SAMPLING, FIELD SCREENING

The Phase II ESA consisted of advancing exterior boreholes at the subject property. Seven boreholes were advanced between August 9 and August 20, 2021. Five boreholes were implemented with a monitoring well upon completion. The borehole/monitoring well locations are presented on Figure 2.

Strata Soil Sampling Inc. advanced the borehole using a Geoprobe 7822 direct push drill rig. The boreholes were advanced to maximum depths of approximately 7.62 metres (25 ft).

Soil samples were obtained from the boreholes commencing at ground surface, and typically thereafter at continuous intervals. The soil samples were collected using a dual tube sampler. A dedicated PVC liner was used to collect each soil sample. Soil sampling equipment was decontaminated between borehole locations to prevent cross-contamination. Equipment decontamination included removal of residual soil, a wash with Alconox soap solution, a rinse with water, and air dry. Dedicated nitrile gloves were worn by the TEC field representative when handling each soil sample.

Upon collection, the soil samples were split into two portions. One portion was placed in laboratory supplied sample containers and/or EnCore® samplers and immediately packed in a cooler with a maximum temperature of 10°C. This portion was reserved for potential submission to the laboratory for analysis. The second sample portion was placed in a resealable sample bag. The bagged portions of the soil samples were examined using visual and olfactory senses, logged according to physical attributes, and field screened for the presence of volatile organic vapours. Observations included soil type, colour, moisture content, consistency, staining, odours, and presence of liquid phase chemical, such as petroleum hydrocarbons. Following a minimum one hour equilibration period at room temperature, the soil samples were field screened for the presence of volatile organic vapours using a RKI Eagle hydrocarbon meter, calibrated with hexane and operated in methane elimination mode (RKI Instruments, 2012). The RKI unit is specific to the aromatic (volatile) components of petroleum hydrocarbons and other chemicals, and can detect vapour concentrations between 5 and 11,000 ppm. The visual/olfactory observations and volatile vapour headspace concentrations for each soil sample are presented in the Borehole Logs (refer to Appendix B).

Soil samples submitted for laboratory analysis were selected based on observations made in the field. For example, maximum volatile vapour concentrations were used to determine which soil samples would be submitted for petroleum hydrocarbons ("PHC") and volatile organic compounds ("VOC") analysis.

Three boreholes/monitoring wells (Boreholes BH208, BH209, and BH210) installed by TEC during the Phase II ESA were drilled for geotechnical purposes under the supervision of Fisher Engineering. The geotechnical borehole logs and site plan are presented in Appendix A. Two of the boreholes (BH208 and BH 210 were implemented with monitoring wells. Selected soil and groundwater samples from the geotechnical boreholes were submitted for laboratory analyses of O.Reg. 153/04 parameters.

5.3 MONITORING WELL CONSTRUCTION, DEVELOPMENT

Five of the boreholes were implemented with a monitoring well upon completion. The monitoring wells were installed at depths between 3.96 and 7.62 metres (13 and 25 ft) below grade. Strata Soil Sampling Inc. is a licensed well contractor and completed installation of the monitoring wells according to O.Reg. 903 – *Water Wells*. The monitoring wells were constructed using 50 mm schedule 40 PVC solid riser and #10 slotted screen. A screen length of 3.05 metres (10 ft.) was used for the monitoring well. The screened portion of the monitoring well intersected the water table. Silica sand was placed around the screened portion of the monitoring wells. A bentonite seal was placed above the silica sand. The monitoring wells were capped with a J-plug and a flush-mounted, bolt-down casing set in concrete. The monitoring wells BH208 and BH210 were finished with monuments instead of flush-mount casings.

5.4 GROUNDWATER MONITORING, SAMPLING

The installed monitoring wells were inspected on August 24, 2021. Upon removal of the well cap, the headspace volatile vapour concentration was measured in each monitoring well using a RKI Eagle hydrocarbon metre calibrated and operated as described in section 5.2. Elevated headspace volatile vapour concentrations may indicate the presence of subsurface PHC (i.e. gasoline) and/or VOC impacts.

A Heron Instruments water level meter and oil/water interface meter was used to measure the static water table depth at each monitoring well location and to ascertain the presence/absence of any free-phase liquid PHC.

Groundwater sampling was completed on August 24, 2021. Groundwater samples were obtained from the monitoring well using a low flow (minimal drawdown) groundwater sampling procedure (Puls and Barcelona, 1996). Implementation of this groundwater sample collection technique was intended to increase the representativeness of the data generated during the investigation. A Geotech Geopump II peristaltic pump equipped with dedicated LDPE tubing was used to extract the groundwater samples from each of the monitoring wells. The tubing was inserted in the well so that the bottom of the tubing was at least 0.3 m above the bottom of the well, taking care to minimize/prevent contact with settled solids at the bottom of the well. Groundwater was purged at a rate that minimized drawdown.

Immediately subsequent to purging/stabilization, groundwater was collected in laboratory supplied containers containing appropriate preservatives, where applicable. The containerised groundwater samples were placed in a cooler with a maximum temperature of 10° C.

All equipment placed into the monitoring wells was either dedicated to the wells, or thoroughly washed/rinsed prior to insertion. All equipment was handled with dedicated nitrile gloves.

5.5 ANALYTICAL LABORATORY

Soil and groundwater samples were submitted under chain of custody to ALS Environmental for analysis. ALS Environmental is accredited by the Standards Council of Canada ("SCC") and the Canadian Association for Laboratory Accreditation Inc. ("CALA") in accordance with O.Reg. 153/04 for all parameters analysed during the Phase II ESA and for which accreditation is available in Ontario. All soil and groundwater samples were analysed in accordance with O.Reg. 153/04 protocols (MOE³, 2011).

5.6 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

A quality assurance and quality control ("QA/QC") program was implemented as part of the Phase II ESA in an effort to ensure that the soil and groundwater samples collected from the site accurately represented actual site conditions. The QA/QC program meets the recommendations outlined in the MOE document *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* (MOE¹, 1996), and is summarized as follows:

- Sample collection was completed using appropriate containers and handling, preservation, storage practices.
- A SCC/CALA accredited laboratory was utilized to complete the soil and groundwater analysis.
- Analytical reports were reviewed to ensure that hold times, analytical methods, laboratory QC samples/recovery ranges (i.e. blanks, duplicates, spikes), and method detection limits ("MDL") meet the requirements set out in *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act* (MOE³, March 9, 2011).

5.7 PROJECT PERSONNEL

Mr. Robb Hudson, P.Eng., MBA, QP, President of TEC, completed all work related to planning and reporting the results of the Phase II ESA, including defining the scope of work, borehole layout at the site, data review/interpretation, evaluation of results/data with respect to O.Reg. 153/04, completion of field work associated with soil sampling and sample delivery

to the laboratory, and report preparation. A summary of Mr. Hudson's qualifications are presented in Appendix D.

Mr. Alexander Hudson, Field Project Manager for TEC, completed all field work associated with groundwater sampling and sample delivery to the laboratory.

6.0 RESULTS OF PHASE II ESA

6.1 SOIL SAMPLING

6.1.1 Geologic Conditions

The Phase II ESA consisted of advancing exterior boreholes at the subject property. Seven boreholes were advanced between August 9 and August 20, 2021. The boreholes penetrated the native soil. Field observations indicate that the native soils at the site consist primarily of silt.

6.1.2 Field Observations and Measurements

All soil samples obtained from the borehole were inspected, using visual and olfactory senses, for any evidence of unusual staining and/or odours.

In addition to visual/olfactory observations, the soil samples were field tested for the presence of volatile organic vapours. The volatile vapour concentrations measured in the soil samples obtained from the borehole ranged between 0 ppm (i.e. nondetectable) and 510 ppm. The volatile vapour headspace concentration for each soil sample is presented in the Borehole Logs (refer to Appendix B).

There was no evidence of liquid petroleum hydrocarbons observed in any of the soil samples obtained from the boreholes.

6.2 GROUNDWATER SAMPLING

6.2.1 Field Observations and Measurements

The installed monitoring wells were inspected for the presence of headspace volatile organic vapours, depth to groundwater, and the presence of free-phase liquid petroleum hydrocarbons. The following table summarizes the field observations and measurements obtained from the monitoring wells:

Monitoring Well Identification	Headspace Volatile Organic Vapour Concentration (ppm)	Depth to Groundwater (m)	Liquid Petroleum Hydrocarbon Layer Thickness
BH101	0	1.746	None present
BH102	5	1.442	None present

BH103	260	1.385	None present
BH104	0	1.399	None present
ВН208	45	1.831	None present
BH210	0	1.060	None present

6.3 LABORATORY ANALYSIS

6.3.1 Soil Samples

Based on the field observations and measurements, a total of 13 soil samples representative of the soil conditions encountered in the boreholes were submitted for accredited laboratory analysis of one or more of the following site condition standards:

- Volatile organic compounds ("VOC")
- petroleum hydrocarbons ("PHC") fractions F1 through F4.
- Polycyclic aromatic hydrocarbons ("PAH")
- Polychlorinated biphenyls ("PCB")
- metals and inorganics

The results of these analyses were compared to the applicable O.Reg. 153/04 Table 2 site condition standards to confirm/refute regulatory compliance.

The Certificates of Laboratory Analysis for the soil samples are presented in Appendix C.

6.3.2 Groundwater Samples

Six groundwater samples representative of the conditions encountered in the installed monitoring wells were submitted under chain of custody to ALS Environmental for analysis of one or more of the following site condition standards:

- Volatile organic compounds ("VOC")
- petroleum hydrocarbons ("PHC") fractions F1 through F4.
- Polycyclic aromatic hydrocarbons ("PAH")
- Polychlorinated biphenyls ("PCB")
- metals and inorganics

The Certificates of Laboratory Analysis for the groundwater samples are presented in Appendix C.

6.3.3 Analytical Results

The analytical results for the soil samples were compared to the applicable O.Reg. 153/04 Table 2 site condition standards to verify regulatory compliance. This comparison indicated that the measured chemical concentrations in the soil samples submitted for laboratory analysis are **in compliance** with the applicable O.Reg. 153/04 Table 2 site condition standards for the chemical parameters analyzed, with the following exceptions:

• The Sodium Absorption Ratio (SAR) measured in soil samples 104 15-17.5 and 209 0-5 exceeded applicable Table 2 SCS.

Figure 3 contains the analytical results for the soil samples and the applicable 0.Reg. 153/04 Table 2 site condition standards.

The analytical results for the groundwater samples were compared to the applicable O.Reg. 153/04 Table 2 site condition standards to verify regulatory compliance. This comparison indicated that the measured chemical concentrations in the groundwater samples submitted for laboratory analysis are **in compliance** with the applicable O.Reg. 153/04 Table 2 site condition standards for the chemical parameters analyzed, with the following exceptions:

- The concentration of barium and sodium detected in groundwater sample BH103 exceeded the applicable Table 2 SCS (5530 ppb and 1 620 000 ppb vs. SCS of 1000 ppb and 490 000 ppb, respectively).
- The concentration of sodium detected in groundwater sample BH104 exceeds the applicable Table 2 SCS (1 570 000 ppb vs. SCS of 490 000 ppb).

Figure 4 contains the analytical results for the groundwater samples and the applicable 0.Reg. 153/04 Table 2 site condition standards.

A thorough review of the analytical reports indicates that hold times, analytical methods, laboratory QC samples/recovery ranges (i.e. blanks, duplicates, spikes), and method detection limits ("MDL") meet the requirements set out in the MOE *Protocol for Analytical Methods* (MOE³, 2011).

7.0 INTERPRETATION & EVALUATION OF INFORMATION

The observations and measurements made during the soil and groundwater sampling segments of the Phase II ESA, and the results of the laboratory analysis for the soil and groundwater samples indicate that there are several exceedences of applicable O.Reg. 153/04 Table 2 SCS for ICC use in soil and groundwater samples obtained during the investigation.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Trafalgar Environmental Consultants (TEC) was retained by RIC (KDL) Inc. to conduct a Phase II ESA of the property identified as 1382 County Road 28, Fraserville, Ontario (referred to hereafter as "the site"). The objective of the Phase II ESA was to ascertain the presence of any subsurface environmental impact at the site that may have resulted from use of the property as a race track.

The Phase II ESA was conducted in a manner consistent with the information contained in CSA standard *Z769-00 Phase II Environmental Site Assessment* and selected portions of *Ontario Regulation 153/04 – Records of Site Condition, Part XV.1 of the Environmental Protection Act.* The Phase II ESA was not conducted in support of a Record of Site Condition.

The applicable site condition standards selected for the subject property are contained within Table 2 of the Ontario Regulation 153/04 reference document *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (dated April 15, 2011). Table 2 is entitled "Full Depth Generic Site Condition Standards in a Potable Ground Water Condition." The applicable standards are for a potable groundwater condition, industrial/commercial/community property use, and coarse textured soils.

The Phase II ESA consisted of advancing exterior boreholes at the subject property. Seven boreholes were advanced on August 9 and August 10, 2021. Five boreholes were implemented with a monitoring well upon completion. The borehole/monitoring well locations are presented on Figure 2. The boreholes penetrated the native soil. Field observations indicate that the native soils at the site consist primarily of silt.

All soil samples obtained from the borehole were inspected, using visual and olfactory senses, for any evidence of unusual staining and/or odours.

In addition to visual/olfactory observation, the soil samples were field tested for the presence of volatile organic vapours. The volatile vapour concentrations measured in the soil samples obtained from the boreholes ranged between 0 ppm (i.e. nondetectable) and 510 ppm.

Five of the advanced boreholes were implemented with a monitoring well for groundwater sampling. The installed wells were inspected for the presence of headspace volatile organic vapours, depth to groundwater, and the presence of free-phase liquid petroleum hydrocarbons.

A total of 13 soil samples representative of the soil conditions encountered in the boreholes, and 6 groundwater samples representative of the conditions encountered in the monitoring

wells, were submitted for accredited laboratory analysis of one or more of the following site condition standards:

- Volatile organic compounds ("VOC")
- petroleum hydrocarbons ("PHC") fractions F1 through F4.
- Polycyclic aromatic hydrocarbons ("PAH")
- Polychlorinated biphenyls ("PCB")
- metals and inorganics

The results of these analyses were compared to the applicable 0.Reg. 153/04 Table 2 site condition standards to confirm/refute regulatory compliance.

The analytical results for the soil samples were compared to the applicable O.Reg. 153/04 Table 2 site condition standards to verify regulatory compliance. This comparison indicated that the measured chemical concentrations in the soil samples submitted for laboratory analysis are **in compliance** with the applicable O.Reg. 153/04 Table 2 site condition standards for the chemical parameters analyzed, with the following exceptions:

• The Sodium Absorption Ratio (SAR) measured in soil samples 104 15-17.5 and 209 0-5 exceeded applicable Table 2 SCS.

The analytical results for the groundwater samples were compared to the applicable O.Reg. 153/04 Table 2 site condition standards to verify regulatory compliance. This comparison indicated that the measured chemical concentrations in the groundwater samples submitted for laboratory analysis are **in compliance** with the applicable O.Reg. 153/04 Table 2 site condition standards for the chemical parameters analyzed, with the following exceptions:

- The concentration of barium and sodium detected in groundwater sample BH103 exceeded the applicable Table 2 SCS (5530 ppb and 1 620 000 ppb vs. SCS of 1000 ppb and 490 000 ppb, respectively).
- The concentration of sodium detected in groundwater sample BH104 exceeds the applicable Table 2 SCS (1 570 000 ppb vs. SCS of 490 000 ppb).

The observations and measurements made during the soil and groundwater sampling segments of the Phase II ESA, and the results of the laboratory analysis for the soil and groundwater samples indicate that the current site conditions are not in compliance with the O.Reg. 153/04 Table 2 SCS for ICC use for the parameters analyzed.

Based on the results of this investigation, it appears that the historical activities at the industrial property have resulted in minor environmental impact to the property at 1382 County Road 28 in Fraserville, Ontario.

If you have any questions, or if any additional information is required, please do not hesitate to contact the undersigned.

Respectfully submitted,

TRAFALGAR ENVIRONMENTAL CONSULTANTS

Robb Hudson, P.Eng., MBA, QPESA

9.0 REFERENCES

- 1. Canadian Standards Association, *Z769-00, Phase II Environmental Site Assessment* (CSA International, March 2000).
- 2. Ontario Ministry of Environment (MOE¹). *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.* MOE (December 1996).
- 3. Ontario Ministry of Environment (MOE²). *Soil, Ground Water and Sediment Standards for Use Under Part VX.1 of the* Environmental Protection Act. MOE (April 15, 2011).
- 4. Ontario Ministry of Environment (MOE³). *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the* Environmental Protection Act. MOE (March 9, 2004, amended as of July 1, 2011).
- 5. Ontario Geological Survey 1991. *Bedrock geology of Ontario, southern sheet; Ontario Geological Survey, Map 2544, scale 1:1000000.*
- 6. Barnett, P.J., Cowan, W.R. and Henry, A.P. 1991. *Quaternary geology of Ontario, southern sheet; Ontario Geological Survey, Map 2556, scale 1:1000000.*
- 7. Canada Centre for Mapping, Natural Resources Canada, *Topographic Map 31-E/02, scale 1:50000, Edition 5* (1996).
- 8. RKI Instruments, Inc. *Eagle 2 Operator's Manual, Part Number: 71-0154RK, Revision: M.* RKI Instruments, Inc. (December 20, 2012).
- 9. Puls, R.W. and Barcelona, M.J. *Groundwater Issue: Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures.* United States Environmental Protection Agency (April 1996).

FIGURES

LEGEND

SCALE	AS S		
DRAWN BY	SH	AUG 26/21	7
CHECKED BY			1 1
REVISIONS			ΙΥ
REVISIONS			ı

TRAFALGAR ENVIRONMENTAL CONSULTANTS SITE

P.O. Box 93316 Yonge Street, Newmarket, Ontario L3X 1A3 Phone (416) 801-4631 Fax (905) 841-5494 www.trafalgarenvironmental.com

TITLE SITE LOCATION MAP

3812 COUNTY ROAD 28 FRASERVILLE, ONTARIO

FIGURE

TRAFALGAR PROJ. No. KD

NOTE: SERVICE/UTILITY LOCATIONS ARE APPROXIMATE ONLY

BH### MONITORING WELL LOCATION

BH### BOREHOLE LOCATION

SCALE	AS SI		
DRAWN BY	SH	AUG 27/21	7
CHECKED BY			ן ן
REVISIONS			``
REVISIONS			ا
TITLE	SITE	PLAN	

TRAFALGAR ENVIRONMENTAL CONSULTANTS SITE

P.O. Box 93316 Yonge Street, Newmarket, Ontario L3X 1A3 Phone (416) 801-4631 Fax (905) 841-5494 www.trafalgarenvironmental.com

1382 COUNTY ROAD 28 FRASERVILLE, ONTARIO

TRAFALGAR PROJ. No. KD **FIGURE**

NOTE: SERVICE/UTILITY LOCATIONS ARE APPROXIMATE ONLY

FIGURE 3 SOIL CHEMICAL ANALYSIS BTEX, PHC, VOC

Site Kawartha Downs

1382 County Road 28

Fraserville, Ontario

Trafalgar Project No. KD

Analytical Laboratory ALS Environmental

	Sample Location	BOREHOLE 101	BOREHOLE 101	BOREHOLE 102	BOREHOLE 102	BOREHOLE 103
	Trafalgar Sample ID	101 0-5	101 10-15	102 0-5	102 15-20	103 0-5
O.Reg. 153/04 Site Condition Standards*	Sample Depth (m, BGS)	0-1.52	3.05-4.57	0-1.52	4.57-6.10	0-1.52
Table 2 - Potable Groundwater Condition	Field Vapour Conc. (ppm)	0	220	0	510	0
Industrial/Commercial/Community Property Use	Sample Collection Date	August 9, 2021				
Coarse Textured Soil	Laboratory Report Ref. No.	L2625638	L2625638	L2625638	L2625638	L2625638
	Laboratory Sample ID	L2625638-1	L2625638-2	L2625638-3	L2625638-4	L2625638-5
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample Analysis Date(s)	August 13-18, 2021				
Contaminant Names and Site Condi	tion Standards					
Benzene	0.32	nd	nd	nd	nd	nd
Toluene	6.4	nd	nd	nd	nd	nd
Ethylbenzene	1.1	nd	nd	nd	nd	nd
Xylene Mixture	26	nd	nd	nd	nd	nd
Petroleum Hydrocarbons F1 (C6 to C10 - BTEX)**	55	nd	nd	nd	nd	nd
Petroleum Hydrocarbons F2 (>C10 to C16)	230	nd	nd	nd	nd	nd
Petroleum Hydrocarbons F3 (>C16 to C34)	1700	nd	nd	nd	nd	nd
Petroleum Hydrocarbons F4 (>C34)	3300	nd	nd	nd	nd	nd
retroicum nyurocurbons 11 (* 651)	3300	nu	nu nu	nu	na	nu
Acetone	16	nd	nd	nd	nd	nd
Bromodichloromethane	1.5	nd	nd	nd	nd	nd
Bromoform	0.61	nd	nd	nd	nd	nd
Bromomethane	0.05	nd	nd	nd	nd	nd
Carbon Tetrachloride	0.21	nd	nd	nd	nd	nd
Chlorobenzene	2.4	nd	nd	nd	nd	nd
Chloroform	0.47	nd	nd	nd	nd	nd
Dibromochloromethane	2.3	nd	nd	nd	nd	nd
1,2-Dichlorobenzene (o-DCB)	1.2	nd	nd	nd	nd	nd
1,3-Dichlorobenzene (m-DCB)	9.6	nd	nd	nd	nd	nd
1,4-Dichlorobenzene (p-DCB)	0.2	nd	nd	nd	nd	nd
Dichlorodifluoromethane	16	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.47	nd	nd	nd	nd	nd
1,2-Dichloroethane	0.05	nd	nd	nd	nd	nd
1,1-Dichloroethylene	0.064	nd	nd	nd	nd	nd
cis-1,2-Dichloroethylene	1.9	nd	nd	nd	nd	nd
trans-1,2-Dichloroethylene	1.3	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.16	nd d	nd a	nd	nd	nd
1,3-Dichloropropene	0.059	nd d	nd	nd	nd	nd
Ethylene Dibromide	0.05	nd	nd	nd	nd	nd
Hexane (n)	46	nd d	nd a	nd d	nd	nd
Methyl Ethyl Ketone	70	nd	nd	nd	nd	nd
Methyl Isobutyl Ketone	31	nd	nd	nd	nd	nd
Methyl Tert Butyl Ether (MTBE)	1.6	nd	nd	nd	nd	nd
Methylene Chloride	1.6	nd	nd	nd	nd	nd
Styrene	34	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.087	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd
Tetrachloroethylene (PCE)	1.9	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	6.1	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	nd
Trichloroethylene (TCE)	0.55	nd	nd	nd	nd	nd
Trichlorofluoromethane	4	nd	nd	nd	nd	nd
Vinyl Chloride	0.032	nd	nd	nd	nd	nd
			1			

Notes:

 $Reported \ concentrations \ are \ in \ ug/g \ (ppm-parts \ per \ million) \ dry \ weight \ basis \ unless \ otherwise \ specified.$

[&]quot;nd" - non-detectable with respect to the laboratory detection limit (includes diluted samples, refer to Certificates of Laboratory Analysis for detection limits), "" - sample was not analysed for the chemical parameter.

[&]quot;NGV" - a site condition standard is not specified in 0.Reg. 153/04, "BGS" - below ground surface, "NA" - not applicable, "NM" - not measured.

^{*}Site condition standards are from Table 2 of "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (MOE, April 15, 2011).

^{**}The Petroleum Hydrocarbons F1 standard does not include BTEX concentrations; the BTEX concentrations have been subtracted from the Petroleum Hydrocarbons F1 analytical results to yield the concentrations reported above.

BOLD/Shaded values are not in compliance with the Table 2 potable site condition standards for industrial/commercial/community property use and coarse textured soils.

FIGURE 3 SOIL CHEMICAL ANALYSIS BTEX, PHC, VOC

Site Kawartha Downs

1382 County Road 28

Fraserville, Ontario

Trafalgar Project No. KD

Analytical Laboratory ALS Environmental

	Sample Location	BOREHOLE 103	BOREHOLE 104	BOREHOLE 104	BOREHOLE 210	BOREHOLE 210
	Trafalgar Sample ID	103 20-25	104 0-5	104 15-17.5	210 0-5	210 20-21.5
O.Reg. 153/04 Site Condition Standards*	Sample Depth (m, BGS)	6.10-7.62	0-1.52	4.57-5.33	0-1.52	6.1-6.25
Table 2 - Potable Groundwater Condition	Field Vapour Conc. (ppm)	65	0	55	0	0
Industrial/Commercial/Community Property Use	Sample Collection Date	August 9, 2021	August 9, 2021	August 9, 2021	August 10, 2021	August 10, 2021
Coarse Textured Soil	Laboratory Report Ref. No.	L2625638	L2625638	L2625638	L2625638	L2625638
	Laboratory Sample ID	L2625638-6	L2625638-7	L2625638-8	L2625638-9	L2625638-10
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample Analysis Date(s)	August 13-18, 2021				
Contaminant Names and Site Condit	tion Standards					
Benzene	0.32	nd	nd	nd	nd	nd
Toluene	6.4	nd	nd	nd	nd	nd
Ethylbenzene	1.1	nd	nd	nd	nd	nd
Xylene Mixture	26	nd	nd	nd	nd	nd
Petroleum Hydrocarbons F1 (C6 to C10 - BTEX)**	55	nd	nd	nd	nd	nd
Petroleum Hydrocarbons F2 (>C10 to C16)	230	nd	nd	nd	nd	nd
Petroleum Hydrocarbons F3 (>C16 to C34)	1700	nd	nd	nd	276	72
Petroleum Hydrocarbons F4 (>C34)	3300	nd	nd	53	61	nd
retroleum flydrocarbons F4 (2034)	3300	nu	nu nu	33	01	nu
Acetone	16	nd	nd	nd	nd	nd
Bromodichloromethane	1.5	nd	nd	nd	nd	nd
Bromoform	0.61	nd	nd	nd	nd	nd
Bromomethane	0.05	nd	nd	nd	nd	nd
Carbon Tetrachloride	0.21	nd	nd	nd	nd	nd
Chlorobenzene	2.4	nd	nd	nd	nd	nd
Chloroform	0.47	nd	nd	nd	nd	nd
Dibromochloromethane	2.3	nd	nd	nd	nd	nd
1,2-Dichlorobenzene (o-DCB)	1.2	nd	nd	nd	nd	nd
1,3-Dichlorobenzene (m-DCB)	9.6	nd	nd	nd	nd	nd
1,4-Dichlorobenzene (p-DCB)	0.2	nd	nd	nd	nd	nd
Dichlorodifluoromethane	16	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.47	nd	nd	nd	nd	nd
1,2-Dichloroethane	0.05	nd	nd	nd	nd	nd
1,1-Dichloroethylene	0.064	nd	nd	nd	nd	nd
cis-1,2-Dichloroethylene	1.9	nd	nd	nd	nd	nd
trans-1,2-Dichloroethylene	1.3	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.16	nd	nd	nd	nd	nd
1,3-Dichloropropene	0.059	nd nd	nd nd	nd nd	nd nd	nd nd
Ethylene Dibromide	0.05	nd nd	nd nd	nd nd	nd nd	nd nd
Hexane (n)	46 70	nd nd	nd nd	nd nd	nd nd	nd
Methyl Ethyl Ketone Methyl Isobutyl Ketone	31	nd nd	nd nd	nd nd	nd nd	nd
		nd nd	nd nd	nd nd	nd nd	nd nd
Methyl Tert Butyl Ether (MTBE)	1.6	nd	nd	nd	nd	nd
Methylene Chloride	1.6	nd	nd	nd	nd d	nd
Styrene	34	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.087	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd
Tetrachloroethylene (PCE)	1.9	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	6.1	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	nd
Trichloroethylene (TCE)	0.55	nd	nd	nd	nd	nd
Trichlorofluoromethane	4	nd	nd	nd	nd	nd
Vinyl Chloride	0.032	nd	nd	nd	nd	nd

Notes:

 $Reported \ concentrations \ are \ in \ ug/g \ (ppm-parts \ per \ million) \ dry \ weight \ basis \ unless \ otherwise \ specified.$

[&]quot;nd" - non-detectable with respect to the laboratory detection limit (includes diluted samples, refer to Certificates of Laboratory Analysis for detection limits), "." - sample was not analysed for the chemical parameter.

[&]quot;NGV" - a site condition standard is not specified in 0.Reg. 153/04, "BGS" - below ground surface, "NA" - not applicable, "NM" - not measured.

^{*}Site condition standards are from Table 2 of "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (MOE, April 15, 2011).

^{**}The Petroleum Hydrocarbons F1 standard does not include BTEX concentrations; the BTEX concentrations have been subtracted from the Petroleum Hydrocarbons F1 analytical results to yield the concentrations reported above.

BOLD/Shaded values are not in compliance with the Table 2 potable site condition standards for industrial/commercial/community property use and coarse textured soils.

FIGURE 3 SOIL CHEMICAL ANALYSIS BTEX, PHC, VOC

Site Kawartha Downs

1382 County Road 28

Fraserville, Ontario

Trafalgar Project No. KD

Analytical Laboratory ALS Environmental

	Comple Legation	DODEROI E 200	DODEROI E 200	DUDERUI E 300		
1	Sample Location Trafalgar Sample ID	BOREHOLE 209 209 0-5	BOREHOLE 208 208 0-5	BOREHOLE 208 208 15-17.5		
O.Reg. 153/04 Site Condition Standards*	Sample Depth (m, BGS)	0-1.52	0-1.52	4.57-5.33]	
Table 2 - Potable Groundwater Condition	Field Vapour Conc. (ppm)	0	0	0		_
Industrial/Commercial/Community Property	Sample Collection Date	August 10, 2021	August 20, 2021	August 20, 2021	_	-
Use Coarse Textured Soil	Laboratory Report Ref. No.	L2625638	L2629752	L2629752	-	-
Coarse Textureu Son	Laboratory Sample ID	L2625638-11	L2629752-1	L2629752-2	-	-
	Sample Analysis Date(s)	August 13-18, 2021	August 23-25, 2021	August 23-25, 2021	-	-
Contaminant Names and Site Condit	tion Standards					
Benzene	0.32	nd	nd	nd	-	-
Toluene	6.4	nd	nd	nd	-	-
Ethylbenzene	1.1	nd	nd	nd	-	-
Xylene Mixture	26	nd	nd	nd	-	-
Petroleum Hydrocarbons F1 (C6 to C10 - BTEX)**	55	nd	nd	nd	-	-
Petroleum Hydrocarbons F2 (>C10 to C16)	230	nd	nd	nd	-	-
Petroleum Hydrocarbons F3 (>C16 to C34)	1700	63	nd	nd	-	-
Petroleum Hydrocarbons F4 (>C34)	3300	680	nd	nd	_	-
recroiced Hydrocarbons 11 (* 651)	5500	000				
Acetone	16	nd	nd	nd	_	_
Bromodichloromethane	1.5	nd	nd	nd		
Bromoform	0.61			nd		_
Bromomethane		nd d	nd d		-	-
	0.05	nd	nd	nd	-	-
Carbon Tetrachloride	0.21	nd	nd	nd	-	-
Chlorobenzene	2.4	nd	nd	nd	-	-
Chloroform	0.47	nd	nd	nd	-	-
Dibromochloromethane	2.3	nd	nd	nd	-	-
1,2-Dichlorobenzene (o-DCB)	1.2	nd	nd	nd	-	-
1,3-Dichlorobenzene (m-DCB)	9.6	nd	nd	nd	-	-
1,4-Dichlorobenzene (p-DCB)	0.2	nd	nd	nd	-	-
Dichlorodifluoromethane	16	nd	nd	nd	-	-
1,1-Dichloroethane	0.47	nd	nd	nd	-	-
1,2-Dichloroethane	0.05	nd	nd	nd	-	-
1,1-Dichloroethylene	0.064	nd	nd	nd	-	-
cis-1,2-Dichloroethylene	1.9	nd	nd	nd	-	-
trans-1,2-Dichloroethylene	1.3	nd	nd	nd	-	-
1,2-Dichloropropane	0.16	nd	nd	nd	_	_
1,3-Dichloropropene	0.059	nd	nd	nd	_	_
Ethylene Dibromide	0.05	nd	nd	nd	_	
Hexane (n)	46	nd	nd	nd	_	_
Methyl Ethyl Ketone	70	nd	nd	nd		
					-	-
Methyl Isobutyl Ketone	31	nd d	nd d	nd	-	-
Methyl Tert Butyl Ether (MTBE)	1.6	nd	nd	nd	-	-
Methylene Chloride	1.6	nd	nd	nd	-	-
Styrene	34	nd	nd	nd	-	-
1,1,1,2-Tetrachloroethane	0.087	nd	nd	nd	-	-
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	-	-
Tetrachloroethylene (PCE)	1.9	nd	nd	nd	-	-
1,1,1-Trichloroethane	6.1	nd	nd	nd	-	-
1,1,2-Trichloroethane	0.05	nd	nd	nd	-	-
Trichloroethylene (TCE)	0.55	nd	nd	nd	-	-
Trichlorofluoromethane	4	nd	nd	nd	_	_
	4	iiu	nd	na	-	-
Vinyl Chloride	0.032	nd	nd	nd	-	-

Notes:

 $Reported \ concentrations \ are \ in \ ug/g \ (ppm-parts \ per \ million) \ dry \ weight \ basis \ unless \ otherwise \ specified.$

[&]quot;nd" - non-detectable with respect to the laboratory detection limit (includes diluted samples, refer to Certificates of Laboratory Analysis for detection limits),"" - sample was not analysed for the chemical parameter.

[&]quot;NGV" - a site condition standard is not specified in 0.Reg. 153/04, "BGS" - below ground surface, "NA" - not applicable, "NM" - not measured.

^{*}Site condition standards are from Table 2 of "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (MOE, April 15, 2011).

^{**}The Petroleum Hydrocarbons F1 standard does not include BTEX concentrations; the BTEX concentrations have been subtracted from the Petroleum Hydrocarbons F1 analytical results to yield the concentrations reported above.

BOLD/Shaded values are not in compliance with the Table 2 potable site condition standards for industrial/commercial/community property use and coarse textured soils.

FIGURE 3 SOIL CHEMICAL ANALYSIS Metals, PAH, PCB, SAR, EC

Site Kawartha Downs 1382 County Road 28 Fraserville, Ontario

Trafalgar Project No. KD

Analytical Laboratory ALS Environmental

O.Reg. 153/04 Site Condition Standards* Table 2 - Potable Groundwater Condition Industrial/Commercial/Community Property Use Coarse Textured Soil	Sample Location Trafalgar Sample ID Sample Depth (m, BGS) Field Vapour Conc. (ppm) Sample Collection Date Laboratory Report Ref. No. Laboratory Sample ID Sample Analysis Date(s)	BOREHOLE 101 101 0-5 0-1.52 0 August 9, 2021 L2625638 L2625638-1 August 13-18, 2021	BOREHOLE 101 101 10-15 3.05-4.57 220 August 9, 2021 L2625638 L2625638-2 August 13-18, 2021	BOREHOLE 102 102 0-5 0-1.52 0 August 9, 2021 L2625638 L2625638-3 August 13-18, 2021	BOREHOLE 102 102 15-20 4.57-6.10 510 August 9, 2021 L2625638 L2625638-4 August 13-18, 2021	BOREHOLE 103 103 0-5 0-1.52 0 August 9, 2021 L2625638 L2625638-5 August 13-18, 2021
Contaminant Names and Site Condi						
Antimony	40	nd	-	nd	-	nd
Arsenic	18	1.7	-	2.6	-	2
Barium	670	52.2	-	123	-	56.2
Beryllium	8	nd	-	0.58	-	nd
Boron (Hot Water Soluble)**	2	nd	-	nd	-	nd
Boron (Total)**	120	6.2	-	10	-	7.4
Cadmium	1.9	nd	-	nd	-	nd
Chromium (Total)	160	10.8	-	22.9	-	11.2
Chromium VI	8	nd	-	nd	-	nd
Cobalt	80	3.7	-	7	-	3.9
Copper	230	5.8	-	13.1	-	7
Lead	120	3.2	-	5.1	-	3.9
Mercury	3.9	nd	-	0.0052	-	nd
Molybdenum	40	nd	-	nd	-	nd
Nickel	270	7	-	14.3	-	7.2
Selenium	5.5	nd	-	nd	-	nd
Silver	40	nd	-	nd	-	nd
Thallium	3.3	nd	-	nd	-	nd
Uranium	33	nd	-	nd	-	nd
Vanadium	86	20.1	_	37.5	_	20.5
Zinc	340	16.9	_	33.2	_	19.2
Acenaphthene	21	nd	nd	nd	nd	nd
Acenaphthylene	0.15	nd	nd	nd	nd	nd
Anthracene	0.67	nd	nd	nd	nd	nd
Benzo(a)anthracene	0.96	nd	nd	nd	nd	nd
Benzo(a)pyrene	0.3	nd	nd	nd	nd	nd
Benzo(b)fluoranthene	0.96	nd	nd	nd	nd	nd
Benzo(ghi)perylene	9.6	nd	nd	nd	nd	nd
Benzo(k)fluoranthene	0.96	nd	nd	nd	nd	nd
Chrysene	9.6	nd	nd	nd	nd	nd
Dibenz(ah)anthracene	0.1	nd	nd	nd	nd	nd
Fluoranthene	9.6	nd	nd	nd	nd	nd
Fluorene	62	nd	nd	nd	nd	nd
Indeno(123-cd)pyrene	0.76	nd	nd	nd	nd	nd
1-Methylnaphthalene	30	nd	nd	nd	nd	nd
2-Methylnaphthalene	30	nd	nd	nd	nd	nd
Naphthalene	9.6	nd	nd	nd	nd	nd
Phenanthrene	12	nd	nd	nd	nd	nd
Pyrene	96	nd	nd	nd	nd	nd
·		-	nu nu			
Polychlorinated Biphenyls (PCB)	1.1		-	nd	nd	nd
Sodium Absorption Ratio (SAR, unitless)	12	0.6	-	11.1	-	2.1
Electrical Conductivity (EC, mS/cm)	1.4	0.159	-	0.956	-	0.238

Notes:

 $Reported \ concentrations \ are \ in \ ug/g \ (ppm-parts \ per \ million) \ dry \ weight \ basis \ unless \ otherwise \ specified.$

[&]quot;nd" - non-detectable with respect to the laboratory detection limit (includes diluted samples, refer to Certificates of Laboratory Analysis for detection limits),"-" - sample was not analysed for the chemical parameter.

 $[&]quot;NGV" - a site condition standard is not specified in O.Reg.\ 153/04, "BGS" - below ground surface, "NA" - not applicable, "NM" - not measured.$

^{*}Site condition standards are from Table 2 of "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (MOE, April 15, 2011).

^{**}The Boron (Hot Water Soluble) standard applies to surface soil samples (0-1.5m BGS), the Boron (Total) standard applies to subsurface soil samples (>1.5m BGS).

BOLD/Shaded values are not in compliance with the Table 2 potable site condition standards for industrial/commercial/community property use and coarse textured soils.

FIGURE 3 SOIL CHEMICAL ANALYSIS Metals, PAH, PCB, SAR, EC

Site Kawartha Downs 1382 County Road 28 Fraserville, Ontario

Trafalgar Project No. KD

Analytical Laboratory ALS Environmental

O.Reg. 153/04 Site Condition Standards* Table 2 - Potable Groundwater Condition Industrial/Commercial/Community Property Use Coarse Textured Soil Contaminant Names and Site Condi	Sample Location Trafalgar Sample ID Sample Depth (m, BGS) Field Vapour Conc. (ppm) Sample Collection Date Laboratory Report Ref. No. Laboratory Sample ID Sample Analysis Date(s)	BOREHOLE 103 103 20-25 6.10-7.62 65 August 9, 2021 L2625638 L2625638-6 August 13-18, 2021	BOREHOLE 104 104 0-5 0-1.52 0 August 9, 2021 L2625638 L2625638-7 August 13-18, 2021	BOREHOLE 104 104 15-17.5 4.57-5.33 55 August 9, 2021 L2625638 L2625638-8 August 13-18, 2021	BOREHOLE 210 210 0-5 0-1.52 0 August 10, 2021 L2625638 L2625638-9 August 13-18, 2021	BOREHOLE 210 210 20-21.5 6.1-6.25 0 August 10, 2021 L2625638 L2625638-10 August 13-18, 2021
Antimony	40	-	-	nd	nd	-
Arsenic	18	-	-	2.6	1.4	-
Barium	670	-	-	44.6	37.5	-
Beryllium	8	-	-	nd	nd	•
Boron (Hot Water Soluble)**	2	-	-	nd	nd	-
Boron (Total)**	120	-	-	6.8	nd	-
Cadmium	1.9	-	-	nd	nd	-
Chromium (Total)	160	-	-	14.2	14.4	-
Chromium VI	8	-	-	0.29	nd	-
Cobalt	80	-	-	3.6	2.8	-
Copper	230	-	-	6.1	6.5	-
Lead	120	-	-	4.2	2.2	-
Mercury	3.9	-	-	nd	nd	-
Molybdenum	40	-	-	1.2	1.8	-
Nickel	270	-	-	6.9	7	-
Selenium	5.5	-	-	nd	nd	-
Silver	40	-	-	nd	nd	-
Thallium	3.3	-	-	nd	nd	-
Uranium	33	-	-	nd	nd	-
Vanadium	86	-	-	18.6	17.9	-
Zinc	340	-	-	31.5	23.3	-
Acenaphthene	21	-	-	nd	nd	nd
Acenaphthylene	0.15	-	-	nd	nd	nd
Anthracene	0.67	-	-	nd	nd	nd
Benzo(a)anthracene	0.96	-	-	nd	nd	nd
Benzo(a)pyrene	0.3	-	-	nd	nd	nd
Benzo(b)fluoranthene	0.96	-	-	nd	nd	nd
Benzo(ghi)perylene	9.6	-	-	nd	nd	nd
Benzo(k)fluoranthene	0.96	-	-	nd	nd	nd
Chrysene	9.6	-	-	nd	nd	nd
Dibenz(ah)anthracene	0.1	-	-	nd	nd	nd
Fluoranthene	9.6	-	-	nd	nd	nd
Fluorene	62	-	-	nd	nd	nd
Indeno(123-cd)pyrene	0.76	-	-	nd	nd	nd
1-Methylnaphthalene	30	_	-	nd	nd	nd
2-Methylnaphthalene	30	-	-	nd	nd	nd
Naphthalene	9.6	-	-	nd	nd	nd
Phenanthrene	12	_	_	nd	nd	nd
Pyrene	96			nd	nd	nd
Polychlorinated Biphenyls (PCB)	1.1	nd	nd	-	-	nd
Codium Absorption Patia (CAD unitle)	12			25.0	0.27	
Sodium Absorption Ratio (SAR, unitless)	12	-	-	25.8	0.37	-
Electrical Conductivity (EC, mS/cm)	1.4	-	-	0.663	0.137	-

Notes

 $Reported \ concentrations \ are \ in \ ug/g \ (ppm-parts \ per \ million) \ dry \ weight \ basis \ unless \ otherwise \ specified.$

[&]quot;nd" - non-detectable with respect to the laboratory detection limit (includes diluted samples, refer to Certificates of Laboratory Analysis for detection limits),"-" - sample was not analysed for the chemical parameter.

[&]quot;NGV" - a site condition standard is not specified in O.Reg. 153/04, "BGS" - below ground surface, "NA" - not applicable, "NM" - not measured.

^{*}Site condition standards are from Table 2 of "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (MOE, April 15, 2011).

^{**}The Boron (Hot Water Soluble) standard applies to surface soil samples (0-1.5m BGS), the Boron (Total) standard applies to subsurface soil samples (>1.5m BGS).

BOLD/Shaded values are not in compliance with the Table 2 potable site condition standards for industrial/commercial/community property use and coarse textured soils.

FIGURE 3 SOIL CHEMICAL ANALYSIS Metals, PAH, PCB, SAR, EC

Site Kawartha Downs

1382 County Road 28 Fraserville, Ontario

Trafalgar Project No. KD

Analytical Laboratory ALS Environmental

	0 17 0	DODELIOI E 200	DODEIIOI E 200		T	T
	Sample Location	BOREHOLE 209	BOREHOLE 208	-	-	-
O.Reg. 153/04 Site Condition Standards*	Trafalgar Sample ID	209 0-5 0-1.52	208 0-5 0-1.52	-	-	-
Table 2 - Potable Groundwater Condition	Sample Depth (m, BGS) Field Vapour Conc. (ppm)	0-1.52	0-1.52	-	-	-
Industrial/Commercial/Community Property	Sample Collection Date	August 10, 2021	August 20, 2021		-	-
Use Coarse Textured Soil	Laboratory Report Ref. No.	L2625638	L2629752			
Coarse Textured Soil	Laboratory Sample ID	L2625638-11	L2629752-1	_	-	-
	Sample Analysis Date(s)	August 13-18, 2021	August 23-25, 2021	-	-	-
Contaminant Names and Site Condi						
Antimony	40	nd	nd	-	-	-
Arsenic	18	2.1	1.7	-	-	-
Barium	670	51.5	18.9	-	-	-
Beryllium	8	nd	nd	_	-	-
Boron (Hot Water Soluble)**	2	nd	nd	_	_	_
Boron (Total)**	120	5.8	nd	_	_	
Cadmium	1.9	nd	nd	_	_	_
					-	-
Chromium (Total)	160	12.7	8.5	-	_	_
Chromium VI	8	nd	0.24	-	-	-
Cobalt	80	3.9	2.2	-	-	-
Copper	230	6.5	2.9	-	-	-
Lead	120	3.4	2.5	-	-	-
Mercury	3.9	nd	0.0143	-	-	-
Molybdenum	40	nd	nd	-	-	-
Nickel	270	7.8	3.8	-	-	-
Selenium	5.5	nd	nd	-	-	-
Silver	40	nd	nd	-	-	-
Thallium	3.3	nd	nd	-	-	-
Uranium	33	nd	nd	-	-	-
Vanadium	86	22.7	19.2	-	-	-
Zinc	340	20.8	10.1	_	-	-
			-4.2			
Acenaphthene	21	nd	nd	_	_	_
Acenaphthylene	0.15	nd	nd	_	-	-
Anthracene	0.67			-	-	-
		nd	nd	-	-	-
Benzo(a)anthracene	0.96	nd	nd	-	-	-
Benzo(a)pyrene	0.3	nd	nd	-	-	-
Benzo(b)fluoranthene	0.96	nd	nd	-	-	-
Benzo(ghi)perylene	9.6	nd	nd	-	-	-
Benzo(k)fluoranthene	0.96	nd	nd	-	-	-
Chrysene	9.6	nd	nd	-	-	-
Dibenz(ah)anthracene	0.1	nd	nd	-	-	-
Fluoranthene	9.6	nd	nd	-	-	-
Fluorene	62	nd	nd	-	-	-
Indeno(123-cd)pyrene	0.76	nd	nd	-	-	-
1-Methylnaphthalene	30	nd	nd	-	-	-
2-Methylnaphthalene	30	nd	nd	-	-	-
Naphthalene	9.6	nd	nd	-	-	-
Phenanthrene	12	nd	nd	-	-	-
Pyrene	96	nd	nd	-	-	-
- ,		-344				
Polychlorinated Biphenyls (PCB)	1.1	_	_	_	_	_
1 organica mateu Dipitetty is (1 ob)						
Sodium Absorption Ratio (SAR, unitless)	12	28.9	0.38			
Electrical Conductivity (EC, mS/cm)				-	_	_
Electrical Colluctivity (EC, ms/cm)	1.4	0.352	0.173	-	_	_
			I	I	l .	l .

Notes:

 $Reported \ concentrations \ are \ in \ ug/g \ (ppm-parts \ per \ million) \ dry \ weight \ basis \ unless \ otherwise \ specified.$

[&]quot;nd" - non-detectable with respect to the laboratory detection limit (includes diluted samples, refer to Certificates of Laboratory Analysis for detection limits), "-" - sample was not analysed for the chemical parameter.

[&]quot;NGV" - a site condition standard is not specified in O.Reg. 153/04, "BGS" - below ground surface, "NA" - not applicable, "NM" - not measured.

^{*}Site condition standards are from Table 2 of "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (MOE, April 15, 2011).

^{**}The Boron (Hot Water Soluble) standard applies to surface soil samples (0-1.5m BGS), the Boron (Total) standard applies to subsurface soil samples (>1.5m BGS).

BOLD/Shaded values are not in compliance with the Table 2 potable site condition standards for industrial/commercial/community property use and coarse textured soils.

FIGURE 4 GROUNDWATER CHEMICAL ANALYSIS BTEX, PHC, VOC

Site Kawartha Downs

1382 County Road 28

Fraserville, Ontario

Trafalgar Project No. KD

Analytical Laboratory ALS Environmental

	Sample Location	BOREHOLE 101	BOREHOLE 102	BOREHOLE 103	BOREHOLE 104	BOREHOLE 208
	Trafalgar Sample ID	BH101 1.746	BH102 1.442	BH103 1.385	BH104 1.399	BH208 1.831
O.Reg. 153/04 Site Condition Standards* Table 2 - Potable Groundwater Condition	Sample Depth (m, BGS) Field Vapour Conc. (ppm)	0	5	260	0	45
All Property Use Categories	Sample Collection Date	August 24, 2021	August 24, 2021	August 24, 2021	August 24, 2021	August 24, 2021
Coarse Textured Soil	Laboratory Report Ref. No.	L2630993	L2630993	L2630993	L2630993	L2630993
	Laboratory Sample ID	L2630993-1	L2630993-2	L2630993-3	L2630993-4	L2630993-5
	Sample Analysis Date(s)	August 25-27, 2021	August 25-27, 2021	August 25-27, 2021	August 25-27, 2021	August 25-27, 2021
Contaminant Names and Site Condit	tion Standards					
Benzene	5	nd	nd	nd	nd	0.83
Toluene	24	nd	nd	nd	nd	1.55
Ethylbenzene	2.4	nd	nd	nd	nd	nd
Xylene Mixture	300	nd	nd	nd	nd	1.17
Petroleum Hydrocarbons F1 (C6 to C10 - BTEX)**	750	nd	nd	nd	nd	nd
Petroleum Hydrocarbons F2 (>C10 to C16)	150	nd	nd	nd	nd	nd
Petroleum Hydrocarbons F3 (>C16 to C34)	500	nd	nd	nd	nd	nd
	500					
Petroleum Hydrocarbons F4 (>C34)	500	nd	nd	nd	nd	nd
Acetone	2700	nd	nd	nd	nd	nd
Bromodichloromethane	16	nd	nd	nd	nd	nd
Bromoform	25	nd	nd	nd	nd	nd
Bromomethane	0.89	nd	nd	nd	nd	nd
Carbon Tetrachloride	0.79	nd	nd	nd	nd	nd
Chlorobenzene	30	nd	nd	nd	nd	nd
Chloroform	2.4	nd	nd	nd	nd	nd
Dibromochloromethane	25	nd	nd	nd	nd	nd
1,2-Dichlorobenzene (o-DCB)	3	nd	nd	nd	nd	nd
1,3-Dichlorobenzene (m-DCB)	59	nd	nd	nd	nd	nd
1,4-Dichlorobenzene (p-DCB)	1	nd	nd	nd	nd	nd
Dichlorodifluoromethane	590	nd	nd	nd	nd	nd
1,1-Dichloroethane	5	nd	nd	nd	nd	nd
1,2-Dichloroethane	1.6	nd	nd	nd	nd	nd
1,1-Dichloroethylene	1.6	nd	nd	nd	nd	nd
cis-1,2-Dichloroethylene	1.6	nd	nd	nd	nd	nd
trans-1,2-Dichloroethylene	1.6	nd	nd	nd	nd	nd
1,2-Dichloropropane	5	nd	nd	nd	nd	nd
1,3-Dichloropropene	0.5	nd	nd	nd	nd	nd
Ethylene Dibromide	0.2	nd	nd	nd	nd	nd
Hexane (n)	51	nd	nd	nd	nd	0.62
Methyl Ethyl Ketone	1800	nd	nd	nd	nd	nd
Methyl Isobutyl Ketone	640	nd	nd	nd	nd	nd
Methyl Tert Butyl Ether (MTBE)	15	nd	nd	nd	nd	nd
Methylene Chloride	50	nd	nd	nd	nd	nd
Styrene	5.4	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.1	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1	nd	nd	nd	nd	nd
Tetrachloroethylene (PCE)	1.6	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	200	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	4.7	nd	nd	nd	nd	nd
Trichloroethylene (TCE)	1.6	nd	nd	nd	nd	nd
Trichlorofluoromethane	150	nd	nd	nd	nd	nd
Vinyl Chloride	0.5	nd	nd	nd	nd	nd

Notes:

Reported concentrations are in ug/L (ppb-parts per billion) unless otherwise specified.

[&]quot;nd" - non-detectable with respect to the laboratory detection limit (includes diluted samples, refer to Certificates of Laboratory Analysis for detection limits), "." - sample was not analysed for the chemical parameter.

[&]quot;NGV" - a site condition standard is not specified in 0.Reg. 153/04, "BGS" - below ground surface, "NA" - not applicable, "NM" - not measured.

^{*}Site condition standards are from Table 2 of "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (MOE, April 15, 2011).

^{**}The Petroleum Hydrocarbons F1 standard does not include BTEX concentrations; the BTEX concentrations have been subtracted from the Petroleum Hydrocarbons F1 analytical results to yield the concentrations reported above.

BOLD/Shaded values are not in compliance with the Table 2 potable site condition standards for all property use categories and coarse textured soils.

FIGURE 4 GROUNDWATER CHEMICAL ANALYSIS BTEX, PHC, VOC

Site Kawartha Downs

1382 County Road 28

Fraserville, Ontario

Trafalgar Project No. KD

Analytical Laboratory ALS Environmental

	T.			1	ı	
	Sample Location	BOREHOLE 210	-	-	-	-
	Trafalgar Sample ID	BH210 1.06	-	-	-	-
O.Reg. 153/04 Site Condition Standards*	Sample Depth (m, BGS)	0	-	-	-	-
Table 2 - Potable Groundwater Condition All Property Use Categories	Field Vapour Conc. (ppm) Sample Collection Date	August 24, 2021				
Coarse Textured Soil	Laboratory Report Ref. No.	L2630993	_	_	-	_
	Laboratory Sample ID	L2630993-6	-	-	-	-
	Sample Analysis Date(s)	August 25-27, 2021	-	-	-	
Contaminant Names and Site Condi						
Benzene	5	nd	-	-	-	-
Toluene	24	nd	-	-	-	-
Ethylbenzene	2.4	nd	-	-	-	-
Xylene Mixture	300	nd	-	-	-	-
Petroleum Hydrocarbons F1 (C6 to C10 - BTEX)**	750	nd	-	-	-	-
Petroleum Hydrocarbons F2 (>C10 to C16)	150	nd	-	-	-	
Petroleum Hydrocarbons F3 (>C16 to C34)	500	nd	-	-	-	-
Petroleum Hydrocarbons F4 (>C34)	500	nd	_	_	_	_
retroleum riyurocurbons 11 (2 cs 1)	300	ilu				
Acetone	2700	nd				
Bromodichloromethane		nd	-	-	-	-
	16		-	-	-	-
Bromoform	25	nd	-	-	-	-
Bromomethane	0.89	nd	-	-	-	-
Carbon Tetrachloride	0.79	nd	-	-	-	-
Chlorobenzene	30	nd	-	-	-	-
Chloroform	2.4	nd	-	-	-	-
Dibromochloromethane	25	nd	-	-	-	-
1,2-Dichlorobenzene (o-DCB)	3	nd	-	-	-	-
1,3-Dichlorobenzene (m-DCB)	59	nd	-	-	-	-
1,4-Dichlorobenzene (p-DCB)	1	nd	-	-	-	-
Dichlorodifluoromethane	590	nd	-	-	-	-
1,1-Dichloroethane	5	nd	-	-	-	-
1,2-Dichloroethane	1.6	nd	-	-	-	-
1,1-Dichloroethylene	1.6	nd	-	-	-	-
cis-1,2-Dichloroethylene	1.6	nd	-	-	-	-
trans-1,2-Dichloroethylene	1.6	nd	-	-	-	-
1,2-Dichloropropane	5	nd	-	-	-	-
1,3-Dichloropropene	0.5	nd	-	-	-	-
Ethylene Dibromide	0.2	nd	-	-	-	_
Hexane (n)	51	nd	_	_	_	_
Methyl Ethyl Ketone	1800	nd	-	_	-	_
Methyl Isobutyl Ketone	640	nd	_	_	_	_
Methyl Tert Butyl Ether (MTBE)	15	nd	_	_	_	_
Methylene Chloride	50	nd	-	_	_	
· ·	5.4		_	_	_	
Styrene		nd	-	_	_	-
1,1,1,2-Tetrachloroethane	1.1	nd	-	-	-	-
1,1,2,2-Tetrachloroethane	1	nd	-	-	-	-
Tetrachloroethylene (PCE)	1.6	nd	-	-	-	-
1,1,1-Trichloroethane	200	nd	-	-	-	-
1,1,2-Trichloroethane	4.7	nd	-	-	-	-
Trichloroethylene (TCE)	1.6	nd	-	-	-	-
Trichlorofluoromethane	150	nd	-	-	-	-
Vinyl Chloride	0.5	nd	-	-	-	-

Notes:

Reported concentrations are in ug/L (ppb-parts per billion) unless otherwise specified.

[&]quot;nd" - non-detectable with respect to the laboratory detection limit (includes diluted samples, refer to Certificates of Laboratory Analysis for detection limits),"" - sample was not analysed for the chemical parameter.

[&]quot;NGV" - a site condition standard is not specified in 0.Reg. 153/04, "BGS" - below ground surface, "NA" - not applicable, "NM" - not measured.

^{*}Site condition standards are from Table 2 of "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (MOE, April 15, 2011).

^{**}The Petroleum Hydrocarbons F1 standard does not include BTEX concentrations; the BTEX concentrations have been subtracted from the Petroleum Hydrocarbons F1 analytical results to yield the concentrations reported above.

BOLD/Shaded values are not in compliance with the Table 2 potable site condition standards for all property use categories and coarse textured soils.

FIGURE 4 GROUNDWATER CHEMICAL ANALYSIS Metals, PAH, PCB

Site Kawartha Downs 1382 County Road 28

Fraserville, Ontario

Trafalgar Project No. KD

Analytical Laboratory ALS Environmental

	Sample Location	BOREHOLE 101	BOREHOLE 102	BOREHOLE 103	BOREHOLE 104	BOREHOLE 208	
	Trafalgar Sample ID	BH101	BH102	BH103	BH104	BH208	
O.Reg. 153/04 Site Condition Standards*	Sample Depth (m, BGS)	1.746	1.442	1.385	1.399	1.831	
Table 2 - Potable Groundwater Condition	Field Vapour Conc. (ppm)	0	5	260	0	45	
All Property Use Categories	Sample Collection Date	August 24, 2021	August 24, 2021	August 24, 2021	August 24, 2021	August 24, 202	
Coarse Textured Soil	Laboratory Report Ref. No.	L2630993	L2630993	L2630993	L2630993	L2630993	
	Laboratory Sample ID	L2630993-1	L2630993-2	L2630993-3	L2630993-4	L2630993-5	
	Sample Analysis Date(s)	August 25-27, 2021	August 25-27, 2021	August 25-27, 2021	August 25-27, 2021	August 25-27, 20	
Contaminant Names and Site Condi	tion Standards						
Antimony	6	nd	0.13	nd	nd	0.12	
Arsenic	25	nd	0.42	nd	nd	0.36	
Barium	1000	110	265	5530	354	147	
	4						
Beryllium		nd	nd	nd	nd	nd	
Boron (Total)	5000	nd	26	nd	nd	29	
Cadmium	2.7	nd	nd	nd	nd	nd	
Chloride	790000	808	223	5970	3500	51.9	
Chromium (Total)	50	nd	nd	nd	nd	nd	
Chromium VI	25	nd	nd	nd	nd	nd	
Cobalt	3.8	nd	nd	1.6	nd	nd	
Copper	87	4.7	1.15	nd	2.1	1.3	
Lead	10	nd	nd	nd	nd	nd	
Mercury	0.29	nd	nd	nd	nd	nd	
Molybdenum	70	4.47	11.6	11.1	32.2	2.34 1.07	
Nickel	100	nd	nd	nd	nd		
Selenium	10	nd	1.72	nd	0.68	0.323	
Silver	1.5	nd	nd	nd	nd	nd	
Sodium	490000	370000	102000	1620000	1570000	72900	
Thallium	2	0.11	0.067	nd	0.11	0.029	
Uranium	20	4.56	3.3	1.74	4.72	1.6	
Vanadium	6.2	nd	0.52	nd	nd	0.57	
Zinc	1100	nd	nd	nd	nd	1	
A 13	4.1	,	0.052	0.024	0.061	,	
Acenaphthene	4.1	nd	0.053	0.021	0.061	nd	
Acenaphthylene	1	nd	nd	nd	nd	nd	
Anthracene	2.4	nd	nd	nd	nd	nd	
Benzo(a)anthracene	1	nd	nd	nd	nd	nd	
Benzo(a)pyrene	0.01	nd	nd	nd	nd	nd	
Benzo(b)fluoranthene	0.1	nd	nd	nd	nd	nd	
Benzo(ghi)perylene	0.2	nd	nd	nd	nd	nd	
Benzo(k)fluoranthene	0.1	nd	nd	nd	nd	nd	
Chrysene	0.1	nd	nd	nd	nd	nd	
Dibenz(ah)anthracene	0.2	nd	nd	nd	nd	nd	
Fluoranthene	0.41	0.043	nd	nd	0.026	nd	
Fluorene	120	nd	nd	nd	nd	nd	
Indeno(123-cd)pyrene	0.2	nd	nd	nd	nd	nd	
1-Methylnaphthalene	3.2	nd	nd	nd	0.026	0.051	
2-Methylnaphthalene	3.2	nd	nd	nd	nd	0.049	
Naphthalene	11	nd	nd	nd	nd	nd	
Phenanthrene	1	nd	0.02	nd	nd	nd	
Pyrene	4.1	nd	nd	nd	nd	nd	
Polychlorinated Biphenyls (PCB)	3	-	-	nd	nd	-	

Notes:

Reported concentrations are in ug/L (ppb-parts per billion) unless otherwise specified.

[&]quot;nd" - non-detectable with respect to the laboratory detection limit (includes diluted samples, refer to Certificates of Laboratory Analysis for detection limits), "-" - sample was not analysed for the chemical parameter.

[&]quot;NGV" - a site condition standard is not specified in O.Reg. 153/04, "BGS" - below ground surface, "NA" - not applicable, "NM" - not measured.

^{*}Site condition standards are from Table 2 of "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (MOE, April 15, 2011).

BOLD/Shaded values are not in compliance with the Table 2 potable site condition standards for all property use categories and coarse textured soils.

FIGURE 4 GROUNDWATER CHEMICAL ANALYSIS Metals, PAH, PCB

Site Kawartha Downs

1382 County Road 28

Fraserville, Ontario

Trafalgar Project No. KD

Analytical Laboratory ALS Environmental

	Sample Location	BOREHOLE 101	-	-	-	-
	Trafalgar Sample ID	BH101	-	-	-	-
O.Reg. 153/04 Site Condition Standards*	Sample Depth (m, BGS)	1.746	-	-	-	-
able 2 - Potable Groundwater Condition	Field Vapour Conc. (ppm)	0	-	-	-	-
All Property Use Categories Coarse Textured Soil	Sample Collection Date	August 24, 2021	-	-	-	-
coarse rextured son	Laboratory Report Ref. No.	L2630993	-	-	-	-
	Laboratory Sample ID	L2630993-1	-	-	-	-
Contaminant Names and Site Cond	Sample Analysis Date(s)	August 25-27, 2021	-	-	-	-
Containmant Names and Site Cond	ition standards					
Antimony	6	0.19	_	_	_	_
Arsenic	25	0.61	_	_	_	_
Barium	1000	113	_		_	
Beryllium	4	nd	-	_	-	-
	5000	53	-	-	-	-
Boron (Total)			-	-	-	-
Cadmium	2.7	nd	-	-	-	-
Chloride	790000	23.5	-	-	-	-
Chromium (Total)	50	nd	-	-	-	-
Chromium VI	25	nd	-	-	-	-
Cobalt	3.8	nd	-	-	-	-
Copper	87	1.97	-	-	-	-
Lead	10	nd	-	-	-	-
Mercury	0.29	nd	-	-	-	-
Molybdenum	70	25.5	-	-	-	-
Nickel	100	nd	-	-	-	-
Selenium	10	0.73	-	-	-	-
Silver	1.5	nd	-	-	-	-
Sodium	490000	113000	-	-	-	-
Thallium	2	0.013	-	-	-	-
Uranium	20	1.79	-	-	-	-
Vanadium	6.2	0.93	-	-	-	-
Zinc	1100	1.2	-	-	-	-
Acenaphthene	4.1	0.025	-	-	-	-
Acenaphthylene	1	nd	-	_	-	_
Anthracene	2.4	nd	_	_	_	_
Benzo(a)anthracene	1	nd	_	_	_	_
Benzo(a)pyrene	0.01	nd	_	_	_	_
Benzo(b)fluoranthene	0.1	nd	_		_	
Benzo(ghi)perylene	0.1	nd	_	_	_	
Benzo(ghi)peryiene Benzo(k)fluoranthene	0.2		_	_	_	_
		nd	_	_	_	_
Chrysene	0.1	nd 	-	-	-	-
Dibenz(ah)anthracene	0.2	nd	-	-	-	-
Fluoranthene	0.41	nd	-	-	-	-
Fluorene	120	nd	-	-	-	-
Indeno(123-cd)pyrene	0.2	nd	-	-	-	-
1-Methylnaphthalene	3.2	nd	-	-	-	-
2-Methylnaphthalene	3.2	nd	-	-	-	-
Naphthalene	11	nd	-	-	-	-
Phenanthrene	1	nd	-	-	-	-
Pyrene	4.1	nd	-	-	-	-
Polychlorinated Biphenyls (PCB)	3	nd	l	1	Ĩ	

Notes:

Reported concentrations are in ug/L (ppb-parts per billion) unless otherwise specified.

[&]quot;nd" - non-detectable with respect to the laboratory detection limit (includes diluted samples, refer to Certificates of Laboratory Analysis for detection limits), "-" - sample was not analysed for the chemical parameter.

[&]quot;NGV" - a site condition standard is not specified in O.Reg. 153/04, "BGS" - below ground surface, "NA" - not applicable, "NM" - not measured.

^{*}Site condition standards are from Table 2 of "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (MOE, April 15, 2011).

BOLD/Shaded values are not in compliance with the Table 2 potable site condition standards for all property use categories and coarse textured soils.

APPENDIX A GEOTECHNICAL BOREHOLE LOGS & SITE PLAN

LOG OF BOREHOLE NO. BH208(MW) SHEET. 1 of 1

PROJECT NO.: FE-P 21-11454

PROJECT NAME: Geotechnical Investigation

Kawartha Downs, Moore Dr. & County Rd. LOCATION:

28, Peterborough, ON.

DRILLING METHOD: Geo-Probe Hollow Stem

DRILLING DATE: August 20, 2021

	DRI	LLING METHOD: Geo-Prob	e, F	lollov	v Ste	em		DRIL	LING	DA	IE: /	Augu	st 20,	202				
		SOIL PROFILE				SAMPLES	 ;	PENE	TRATION	n testi	NG (SP	PT)	VAPOU	R READIN	IG (ppm) □			
			J_COT		ä	TYPE NUMBER	ading JUE					30	20		60 80	PIEZOMETER OR		
	_	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	LAB ID:) N	P.I.D. Reading "N" VALUE	l st	IFAR S	TRENGT	H (Kna) <u>.</u>	MOIST	JRF CONT	TENT (%) 😑	WELL CONSTRUCTION		
○ (feet)	UEP IH (metres)	,	SR	(m)	1	_ ₹	H. Z	<u> </u>			20 1		10		30 40			
○ (feet)			 	200.60				4								<u> </u>		
_	Ė	FILL: greyish brown to dark brown	₩			SS-1	13											
2 —	F	sand, trace of silt, gravel,	₩					4 /										
_	Ē	topsoil & topsoil mixed	₩			SS-2	9	\perp								- Somm blank PVC - Somm		
4 —		soils, moist.	\bowtie	1.75/ 198.85		55-2	9	1 L								50mm blank PVC — SECRETARY SECRETARY SECRE		
·																50mm blank PVC		
_	E	BROWN SAND:				SS-3	13	$1 \downarrow$								m bli		
6 —	<u> </u>	occasional trace of gravel,						+ $/$								50m 51m		
_	Ę	wet to very moist, very loose to compact.						$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$										
8 —	F	100se to compact.				SS-4	4	(F	Possibl	y Disti	urbed)							
_	Ē							$1 \setminus$										
10 —	3					CC E	104	┤ `										
_	E					SS-5	24											
12 —	Ė								\									
_	4			4.11/ 196.49														
14 —	F			196.49												50mm Slotted Pipe		
_		BROWN SAND:						4								Slot		
16	Ē	trace of gravel, very wet,				SS-6	78				A	•				mm ⁽⁾ is		
_	<u></u> 5	very dense.						1				\setminus						
18 —	Ė											$ \setminus $						
_	Ē																	
20 —	<u>–</u> 6																	
_	E		214	6.25/ 194.35		SS-7	100	4				1	•			6.10m		
	F	End of Borehole																
22 —	Ē.																	
	<u></u> −7																	
24 —	E	Refusal to augering at 6.25m.																
_	Ė	WL at 2.29m on completion.																
26	<u>_</u> 8	THE GC 2.2011 OIL COMPLECION.																
_	Ė																	
28 —	E																	
_	Ē,																	
30 —	E ⁹																	
_	Ē																	
32 —	Ē																	
_	<u></u>	0 + + 5					<u> </u>	1	1.55									
		Groundwater Depth: on completi	on:	2.29m	i; on	August	24,		1.83 AWN:				LOGGE	D: ES		CHECKED: RC		
İ								I DIV	TATIN.	DL		I	LUUUL	.D. L3	•	OFFICINED, NO		

LOG OF BOREHOLE NO. BH209 SHEET. 1 of 1

PROJECT NO.: FE-P 21-11454

Kawartha Downs, Moore Dr. & County Rd. LOCATION:

28, Peterborough, ON.

DRILLING METHOD: Geo-Probe, Hollow Stem

DRILLING DATE: August 10, 2021

	U	IKIL	LING METHOD: Geo-Prob	e, F	lollow	v Ste	em			KIL	LING	DA	IE: /	augu	ist i	U, Z	2021			
•			SOIL PROFILE				SAMPLE			PENE	TRATION	n test	ING (SP	T) 🛕	VA	POUR F	READIN	G (ppr	m) 🗆	
				LOT		ä	TYPE NUMBER	ding	UE			1 0 (2	0 4	0 6	50 · ·	80	PIEZOMETER OR
			DESCRIPTION	Strata plot	ELEV. Depth	LAB ID:	1	. Red	"N" VALUE	Cr.	HEAR S	TDENCT	∐ (Kna	۰.	_{uc}	NCTI IDE	CONT	ENT /	y∖ 🙈	WELL CONSTRUCTION
O (feet)	Ξ	(metres)		STRA	(m)		<u> </u>	P.I.D. Reading	ž				н (кра 20 <u>1</u>						%) 🤝 40	
, <u>, , , , , , , , , , , , , , , , , , </u>	<u> </u>	Ĕ -0-	GROUND SURFACE (m asl)		207.80															
_	Ł		ASPHALT		0.10/ 207.70		00.4		4.7											
_	Ē	_	GRANULAR MATERIAL				SS-1		13	Ť										
2 —	ŧ	-	FILL:		0.69/ 207.11															
	E	-1	brown sandy silt, moist.	₩	1.07/ 206.73		SS-2		8											
4	‡	. [s.o.m. canay one, motor.	MIW	206.73															
_	E	_		UYU						\										
_	E		BROWN SANDY SILT TILL:	V			SS-3		20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										
6 —	E	-2	trace of clay & gravel,	MW,			55 0													
_	F		moist to dry, compact to very dense.	M																
8 —	E	_	very derise.	WY.			SS-4		66				_							
_	ŧ			M			55 1	Ш												
10 —	E	-3		\mathbb{W}																
TO —	‡			MM	1		SS-5		100+											
_	E	_		WW																
12 —	ŧ				3.81/ 203.99															
_	E	-4		4	203.99															
14 —	Ē			MM																
_	E	_	GREY SILTY SAND TILL:	ΜМ]															
_	ŧ		trace of clay & gravel, occasional boulder, dry, very	ŲYŲ			SS-6		100+											
16 —	E	-5	dense.	4	1		22-0		100+					4						
_	F			\mathbb{N}																
18 —	E	_		M M																
· _	F			WY	1															
	E	-6		Y	6.02/ 201.78		SS-7		100+					4						
20 —	ŧ		5 5		201.76															
_	E	_	End of Borehole																	
22 —	E																			
_	E	-7																		
 24	E																			
	E	_	WL at 2.59m on completion.																	
_	Ē																			
26 —	Ł	-8																		
_	E																			
28 —	Ė	_																		
_	E																			
_	Ė	-9																		
30 —	Ė																			
_	Ł	_																		
32 —	ŧ																			
_	Ė	-10																		
			Groundwater Depth: on completi	on:	2.59m															
	L									DR.	AWN:	BL			LOG	GED:	PK:	S		CHECKED: RC

LOG OF BOREHOLE NO. BH210(MW) SHEET. 1 of 1

PROJECT NO.: FE-P 21-11454

PROJECT NAME: Geotechnical Investigation

Kawartha Downs, Moore Dr. & County Rd. LOCATION:

28, Peterborough, ON.

DRILLING METHOD: Geo-Probe, Hollow Stem

DRILLING DATE: August 10, 2021

GEOTECHNICAL INVESTIGATION

KAWARTHA DOWNS, MOORE DRIVE & COUNTY ROAD 28, PETERBOROUGH, ONTARIO

SITE PLAN WITH BOREHOLE LOCATIONS

PROJECT NO.	SHEET NO.
FE-P 21-11454	
DATE	1
SEPTEMBER 2021	
SCALE	
AS SHOWN	

APPENDIX B BOREHOLE LOGS

PROJECT NUMBER KD
PROJECT NAME Kawartha Downs
CLIENT RIC (KDL) Inc
ADDRESS 1382 Country Road 28

DRILLING DATE August 9, 2021
TOTAL DEPTH 20 ft
DIAMETER 2"
CASING Flush-Mount
SCREEN 50 mm PVC Riser/Screen

COMMENTS Installed beside an existing monitoring well.

Depth (ff)	Symbol	Soil Description	Sample No.	Method	VVC (ppm)	Volatile Vapour Concentration (ppm)	Well Diagram	Well Description
- 1 - 2 - 3 - 4		Topsoil Native Brown Clayey Silt West, soft No staining, no odour	1	DP	0			
-5 -6 -7 -8		Native Brown Silt Moist, stiff No staining, no odour Wet sand and gravel seams	2	DP	0			
- 10 - 11 - 12 - 13 - 14 - 15			3	DP	220			
- 16 - 17 - 18 - 19			4	DP	200			

PROJECT NUMBER KD
PROJECT NAME Kawartha Downs
CLIENT RIC (KDL) Inc
ADDRESS 1382 Country Road 28

DRILLING DATE August 9, 2021
TOTAL DEPTH 20 ft
DIAMETER 2"
CASING Flush-Mount
SCREEN 50 mm PVC Riser/Screen

COMMENTS Vapour reading of 5 ppm on August 24, 2021

								·
Depth (ft)	Symbol	Soil Description	Sample No.	Method	VVC (ppm)	Volatile Vapour Concentration (ppm)	Well Diagram	Well Description
_ _ _ _ 1	S	Brown Granular Fill						Flush-Mount Casing Set in Concrete, J-Plug
_ _ 2 _			1	DP	0			Bentonite Seal
3		Native Brown Silt Moist/wet No staining, no odour Wet sand and gravel						
- 4 - - - - 5		seams						Water Level (1.442 m)
- - - 6 -								
- 7 - 2			2	DP	0			
- 8 - - - - - 9								50 mm PVC Riser/Screen
10								
_ _ 11								
12 12			3	DP	510			Silica Sand Packing Around
13 14								Screened Interval
_ _ _ _ 15								
_ 16 								
- - 17 - - -			4	DP	510			
- 18 - - - - - - 19								
- - - -								

PROJECT NUMBER KD
PROJECT NAME Kawartha Downs
CLIENT RIC (KDL) Inc
ADDRESS 1382 Country Road 28

DRILLING DATE August 9, 2021
TOTAL DEPTH 25 ft
DIAMETER 2"
CASING Flush-Mount
SCREEN 50 mm PVC Riser/Screen

COMMENTS Vapour reading of 260 ppm on August 24, 2021.

				1	CHECKED BY NOBB Hiddson					
Depth (ft)	Symbol	Soil Description	Sample No.	Method	VVC (ppm)	Volatile Vapour Concentration (ppm)	Well Diagrar	n Well Description		
- - -	B.o	Brown Granular Fill						Flush-Mount Casing Set in Concrete, J-Plug		
_ 1 _ _ _ 2		Native Brown Silt Moist/wet, stiff No staining, no odour	_					Concrete, 5-r rug		
3		No staining, no odour	1	DP	0			Bentonite Seal		
- 4								Water Level (1.385 m)		
5 - - - 6										
7										
- - 8 -			2	DP	0					
9										
- 10 - - - 11		Native Grey Silt Dry/moist, very stiff No staining, no odour								
12		3,								
13			3	DP	5					
- 14 - - - 15										
16								50 mm PVC Riser/Screen		
_ _ 17 _				-						
18			4	DP	0					
- 19 - - 20										
21 								Silica Sand Packing Around		
22			5	DP	65	\		Screened Interval		
23 24				5,						
- 24 - -										

PROJECT NUMBER KD
PROJECT NAME Kawartha Downs
CLIENT RIC (KDL) Inc
ADDRESS 1382 Country Road 28

DRILLING DATE August 9, 2021
TOTAL DEPTH 17.5 ft
DIAMETER 2"
CASING Flush-Mount
SCREEN 50 mm PVC Riser/Screen

COMMENTS Vapour reading of 0 ppm on August 24, 2021.

Depth (ft)	Symbol	Soil Description	Sample No.	Method	VVC (ppm)	Volatile Vapour Concentration (ppm)	Well Diagram	
- - - - 1		Asphalt Granular Fill No staining, no odour						Flush-Mount Casing Set in Concrete, J-Plug
2 		Native Brown Silt	1	DP	0			Bentonite Seal
- 4 - 5		Dry No staining, no odour						Water Level (1.399 m)
- - - 6								
- 7 - - - 8 -			2	DP	0			50 mm PVC Riser/Screen
- 9 - 10								
- 11 								Silica Sand Packing Around Screened Interval
- 12 - - - 13		Native Grey Silt Dry/moist No staining, no odour	3	DP	0			
14 15		Wet seams						
- 16 17			4	DP	55			
_ _ _ 18 _ _						/		
- 19 - - -								

PROJECT NUMBER KD
PROJECT NAME Kawartha Downs
CLIENT RIC (KDL) Inc
ADDRESS 1382 Country Road 28

DRILLING DATE August 20, 2021
TOTAL DEPTH 17 ft
DIAMETER 2"
CASING Flush-Mount
SCREEN 50 mm PVC Riser/Screen

COMMENTS Vapour reading of 45 ppm on August 24, 2021. Refer to Appendix A for soil description.

Depth (ft)	Symbol	Soil Description	Sample No.	Method	VVC (ppm)	Volatile Vapour Concentration (ppm)	Well Diagram	Well Description
- - - 1 - - - - 2			1	DP	0			Flush-Mount Casing Set in Concrete, J-Plug Bentonite Seal
-3			'	Dr				50 mm PVC Riser/Screen
- 5 - 6 - 7								Water Level (1.831 m)
- - - - - - - - - - - - - - - - - - -								Silica Sand Packing Around Screened Interval
- 10 - 11 - 11 - 12								
- 13 - 14								
- 15 - 16 - 17			2	DP	0			
17 18 19								

PROJECT NUMBER KD
PROJECT NAME Kawartha Downs
CLIENT RIC (KDL) Inc
ADDRESS 1382 Country Road 28

DRILLING DATE August 10, 2021
TOTAL DEPTH 21.5 ft
DIAMETER 2"
CASING Flush-Mount
SCREEN 50 mm PVC Riser/Screen

COMMENTS Vapour reading of 0 ppm on August 24, 2021. Refer to Appendix A for soil description.

							CRED BT 1(OD)	- Triudson
Depth (ft)	Symbol	Soil Description	Sample No.	Method	VVC (ppm)	Volatile Vapour Concentration (ppm)	Well Diagram	
								Flush-Mount Casing Set in \Concrete, J-Plug
_ 1								
<u> </u>								Dantanita Carl
<u> </u>			١.					Bentonite Seal
_ _ 3			1	DP	0			
-								Water Level (1.060 m)
- 4								
<u> </u>								
- -								
6								
- 7								
_ ′								
8								
- 9								
_ _ 10								
<u> </u>								
- 11								
- - 12								
- '- -								
13								
<u> </u>								
- 14 -								
_ _ 15								
								50 mm PVC Riser/Screen
⊢ 16 □								
- - 17								
<u> </u>								
18								
F 40								
_ 19 _								Silica Sand Packing Around
20								Screened Interval
_								
- 21			2	DP	0			
Disalsimer T		standed for anyiranmental not a				_		Dogo 1 of 1

APPENDIX C CERTIFICATES OF LABORATORY ANALYSIS

Trafalgar Environmental Consultants

(Newmarket)

ATTN: Robb Hudson

P.O. Box 93316

Newmarket On L3X1A3

Date Received: 11-AUG-21

Report Date: 20-AUG-21 09:42 (MT)

Version: FINAL

Client Phone: 416-919-4960

Certificate of Analysis

Lab Work Order #: L2625638

Project P.O. #: KD Job Reference: KD

C of C Numbers: Legal Site Desc:

Amanda Overholster Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2625638 CONT'D....

Job Reference: KD

PAGE 2 of 20

20-AUG-21 09:42 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit

Ontario Regulation 153/04 - April 15, 2011 Standards - T2-Ground Water (Coarse Soil)-All Types of Property Use (No parameter exceedances)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....
Job Reference: KD
PAGE 3 of 20
20-AUG-21 09:42 (MT)

Physical Tests - SOIL

i ilyolodi i coto oole											
		Lab ID	L2625638-1	L2625638-2	L2625638-3	L2625638-4	L2625638-5	L2625638-6	L2625638-7	L2625638-8	L2625638-9
	S	Sample Date	9 09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	10-AUG-21
		Sample ID	101 0-5	101 10-15	102 0-5	102 15-20	103 0-5	103 20-25	104 0-5	104 15-17.5	210 0-5
Analyte	(Unit	Guide Limits #1 #2	5								
Conductivity	mS/cm		0.159		0.956		0.238			0.663	0.137
% Moisture	%		8.37	11.1	8.03	12.9	12.0	7.49	14.8	15.6	14.0
pH	pH units		7.71	7.71	7.74	7.83	7.86	7.96	7.90	7.92	7.89

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 4 of 20

20-AUG-21 09:42 (MT)

Physical Tests - SOIL

i ilyolodi i coto cole				
		Lab ID	L2625638-10	L2625638-11
	S	Sample Date	10-AUG-21	10-AUG-21
		Sample ID	210 20-21.5	209 0-5
A	(Unit	Guide Limits #1 #2	5	
Analyte	Offic	#1 #2		
Conductivity	mS/cm			0.352
% Moisture	%		15.4	8.03
pH	pH units		7.84	7.99

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 5 of 20

20-AUG-21 09:42 (MT)

Cyanides - SOIL

		La Sample Samp		L2625638-1 09-AUG-21 101 0-5	L2625638-3 09-AUG-21 102 0-5	L2625638-5 09-AUG-21 103 0-5	L2625638-8 09-AUG-21 104 15-17.5	L2625638-9 10-AUG-21 210 0-5	L2625638-11 10-AUG-21 209 0-5
Analyte	Unit	Guide L #1	imits #2						
Cyanide, Weak Acid Diss	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 6 of 20

20-AUG-21 09:42 (MT)

Saturated Paste Extractables - SOIL

			Lab ID	L2625638-1	L2625638-3	L2625638-5	L2625638-8	L2625638-9	L2625638-11
		Sampl	e Date	09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	10-AUG-21	10-AUG-21
		Sam	ple ID	101 0-5	102 0-5	103 0-5	104 15-17.5	210 0-5	209 0-5
Analyte	Unit	Guide #1	Limits #2						
SAR	SAR	-	-	0.60	11.1 SAR:M	2.10	25.8 SAR:M	0.37	28.9 SAR:
Calcium (Ca)	mg/L	-	-	46.7	18.3	18.0	2.07	20.8	0.56
Magnesium (Mg)	mg/L	-	-	3.61	<0.50	0.80	<0.50	2.61	<0.50
Sodium (Na)	mg/L	490	-	15.8	172	33.5	135	6.71	78.1

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 7 of 20

20-AUG-21 09:42 (MT)

Metals - SOIL

			Lab ID	L2625638-1	L2625638-3	L2625638-5	L2625638-8	L2625638-9	L2625638-11
		Sampl		09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	10-AUG-21	10-AUG-21
		Sam	ple ID	101 0-5	102 0-5	103 0-5	104 15-17.5	210 0-5	209 0-5
Analyte	Unit	Guide #1	Limits #2						
Antimony (Sb)	ug/g	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic (As)	ug/g	-	-	1.7	2.6	2.0	2.6	1.4	2.1
Barium (Ba)	ug/g	-	-	52.2	123	56.2	44.6	37.5	51.5
Beryllium (Be)	ug/g	-	-	<0.50	0.58	<0.50	<0.50	<0.50	<0.50
Boron (B)	ug/g	-	-	6.2	10.0	7.4	6.8	<5.0	5.8
Boron (B), Hot Water Ext.	ug/g	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cadmium (Cd)	ug/g	-	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Chromium (Cr)	ug/g	-	-	10.8	22.9	11.2	14.2	14.4	12.7
Cobalt (Co)	ug/g	-	-	3.7	7.0	3.9	3.6	2.8	3.9
Copper (Cu)	ug/g	-	-	5.8	13.1	7.0	6.1	6.5	6.5
Lead (Pb)	ug/g	-	-	3.2	5.1	3.9	4.2	2.2	3.4
Mercury (Hg)	ug/g	-	-	<0.0050	0.0052	<0.0050	<0.0050	<0.0050	<0.0050
Molybdenum (Mo)	ug/g	-	-	<1.0	<1.0	<1.0	1.2	1.8	<1.0
Nickel (Ni)	ug/g	-	-	7.0	14.3	7.2	6.9	7.0	7.8
Selenium (Se)	ug/g	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver (Ag)	ug/g	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium (TI)	ug/g	-	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Uranium (U)	ug/g	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vanadium (V)	ug/g	-	-	20.1	37.5	20.5	18.6	17.9	22.7
Zinc (Zn)	ug/g	-	-	16.9	33.2	19.2	31.5	23.3	20.8

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 8 of 20

20-AUG-21 09:42 (MT)

Speciated Metals - SOIL

<u>- p</u>		Lab II	=	L2625638-3 09-AUG-21	L2625638-5 09-AUG-21	L2625638-8 09-AUG-21	L2625638-9 10-AUG-21	L2625638-11
		Sample Date Sample II		102 0-5	103 0-5	104 15-17.5	210 0-5	209 0-5
Analyte	Unit	Guide Limit #1 #2	s					
Chromium, Hexavalent	ug/g		<0.20	<0.20	<0.20	0.29	<0.20	<0.20

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 9 of 20

20-AUG-21 09:42 (MT)

Volatile Organic Compounds - SOIL

Volatile Organic Compound	is - SOIL											
			Lab ID	L2625638-1	L2625638-2	L2625638-3	L2625638-4 09-AUG-21	L2625638-5	L2625638-6	L2625638-7	L2625638-8	L2625638-9 10-AUG-21
			e Date	09-AUG-21 101 0-5	09-AUG-21 101 10-15	09-AUG-21 102 0-5	102 15-20	09-AUG-21 103 0-5	09-AUG-21 103 20-25	09-AUG-21 104 0-5	09-AUG-21 104 15-17.5	210 0-5
		Jan	ibie in	101 0-3	101 10-13	102 0-3	102 13-20	103 0-3	103 20-23	104 0-3	104 15-17.5	210 0-3
Analyte	Unit	Guide #1	Limits #2									
Acetone	ug/g	-	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Benzene	ug/g	-	-	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068
Bromodichloromethane	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Bromoform	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Bromomethane	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Carbon tetrachloride	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Chlorobenzene	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Dibromochloromethane	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Chloroform	ug/g	-	-	<0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
1,2-Dibromoethane	ug/g	-	-	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
1,2-Dichlorobenzene	ug/g	-	-	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
1,3-Dichlorobenzene	ug/g	-	-	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
1,4-Dichlorobenzene	ug/g	-	-	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
Dichlorodifluoromethane	ug/g	-	-	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
1,1-Dichloroethane	ug/g	-	-	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
1,2-Dichloroethane	ug/g	-	-	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
1,1-Dichloroethylene	ug/g	-	-	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
cis-1,2-Dichloroethylene	ug/g	-	-	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
trans-1,2-Dichloroethylene	ug/g	-	-	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
Methylene Chloride	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
1,2-Dichloropropane	ug/g	-	-	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
cis-1,3-Dichloropropene	ug/g	-	-	<0.030	< 0.030	< 0.030	<0.030	< 0.030	< 0.030	< 0.030	<0.030	< 0.030
trans-1,3-Dichloropropene	ug/g	-	-	<0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	<0.030
1,3-Dichloropropene (cis & trans)	ug/g	-	-	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042
Ethylbenzene	ug/g	-	-	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
n-Hexane	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Methyl Ethyl Ketone	ug/g	-	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	ug/g	-	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MTBE	ug/g	-	-	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
Styrene	ug/g	-	-	< 0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D.... Job Reference: KD PAGE 10 of 20 20-AUG-21 09:42 (MT)

		Ī	Lab ID	L2625638-10	L2625638-11
		Sample	e Date	10-AUG-21	10-AUG-21
		Sam	ple ID	210 20-21.5	209 0-5
Analyte	Unit	Guide #1	Limits #2		
Acetone	ug/g	-	-	<0.50	<0.50
Benzene	ug/g	-	-	<0.0068	<0.0068
Bromodichloromethane	ug/g	-	-	<0.050	<0.050
Bromoform	ug/g	-	-	<0.050	<0.050
Bromomethane	ug/g	-	-	< 0.050	<0.050
Carbon tetrachloride	ug/g	-	-	<0.050	<0.050
Chlorobenzene	ug/g	-	-	< 0.050	<0.050
Dibromochloromethane	ug/g	-	-	<0.050	<0.050
Chloroform	ug/g	-	-	< 0.050	<0.050
1,2-Dibromoethane	ug/g	-	-	<0.050	<0.050
1,2-Dichlorobenzene	ug/g	-	-	<0.050	<0.050
1,3-Dichlorobenzene	ug/g	-	-	<0.050	<0.050
1,4-Dichlorobenzene	ug/g	-	-	<0.050	<0.050
Dichlorodifluoromethane	ug/g	-	-	<0.050	<0.050
1,1-Dichloroethane	ug/g	-	-	<0.050	<0.050
1,2-Dichloroethane	ug/g	-	-	<0.050	<0.050
1,1-Dichloroethylene	ug/g	-	-	<0.050	<0.050
cis-1,2-Dichloroethylene	ug/g	-	-	<0.050	<0.050
trans-1,2-Dichloroethylene	ug/g	-	-	< 0.050	< 0.050
Methylene Chloride	ug/g	-	-	<0.050	<0.050
1,2-Dichloropropane	ug/g	-	-	<0.050	<0.050
cis-1,3-Dichloropropene	ug/g	-	-	<0.030	<0.030
trans-1,3-Dichloropropene	ug/g	-	-	<0.030	<0.030
1,3-Dichloropropene (cis & trans)	ug/g	-	-	<0.042	<0.042
Ethylbenzene	ug/g	-	-	<0.018	<0.018
n-Hexane	ug/g	-	-	<0.050	<0.050
Methyl Ethyl Ketone	ug/g	-	-	<0.50	<0.50
Methyl Isobutyl Ketone	ug/g	-	-	<0.50	<0.50
MTBE	ug/g	-	-	<0.050	<0.050
4.					

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Styrene

ug/g

< 0.050

< 0.050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 11 of 20

20-AUG-21 09:42 (MT)

Volatile Organic Compounds - SOIL

voiatile Organic Compounds												
		L	.ab ID	L2625638-1	L2625638-2	L2625638-3	L2625638-4	L2625638-5	L2625638-6	L2625638-7	L2625638-8	L2625638-9
		Sample	Date	09-AUG-21	10-AUG-21							
		Sam	ple ID	101 0-5	101 10-15	102 0-5	102 15-20	103 0-5	103 20-25	104 0-5	104 15-17.5	210 0-5
Analyte	Unit	Guide #1	Limits #2									
1,1,1,2-Tetrachloroethane	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Tetrachloroethylene	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
Toluene	ug/g	-	-	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080
1,1,1-Trichloroethane	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
1,1,2-Trichloroethane	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
Trichloroethylene	ug/g	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Trichlorofluoromethane	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
Vinyl chloride	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
o-Xylene	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
m+p-Xylenes	ug/g	-	-	<0.030	<0.030	<0.030	<0.030	< 0.030	<0.030	<0.030	<0.030	< 0.030
Xylenes (Total)	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
Surrogate: 4-Bromofluorobenzene	%	-	-	110.7	107.4	99.2	99.0	103.3	103.8	100.8	97.8	137.0
Surrogate: 1,4-Difluorobenzene	%	-	-	108.3	102.9	97.4	98.9	102.0	105.0	101.0	98.0	138.9

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 12 of 20

20-AUG-21 09:42 (MT)

Volatile Organic Compounds - SOIL

		Lab ID	L2625638-10	L2625638-11
	Sample	e Date	10-AUG-21	10-AUG-21
	•	210 20-21.5	209 0-5	
Unit	Guide #1	Limits #2		
ug/g	-	-	<0.050	<0.050
ug/g	-	-	<0.050	<0.050
ug/g	-	-	<0.050	< 0.050
ug/g	-	-	<0.080	<0.080
ug/g	-	-	< 0.050	< 0.050
ug/g	-	-	<0.050	<0.050
ug/g	-	-	<0.010	<0.010
ug/g	-	-	<0.050	<0.050
ug/g	-	-	<0.020	<0.020
ug/g	-	-	<0.020	<0.020
ug/g	-	-	<0.030	<0.030
ug/g	-	-	<0.050	<0.050
%	-	-	93.3	101.6
%	-	-	95.5	103.8
	ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/g	#1 ug/g - ug/g	ug/g	Sample Date Sample ID 10-AUG-21 Guide Limits Unit #1 #2 ug/g - - <0.050

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....
Job Reference: KD
PAGE 13 of 20
20-AUG-21 09:42 (MT)

Hydrocarbons - SOIL

ilyarooarbono ooil												
		La	b ID	L2625638-1	L2625638-2	L2625638-3	L2625638-4	L2625638-5	L2625638-6	L2625638-7	L2625638-8	L2625638-9
		Sample I	Date	09-AUG-21	10-AUG-21							
		Sampl	le ID	101 0-5	101 10-15	102 0-5	102 15-20	103 0-5	103 20-25	104 0-5	104 15-17.5	210 0-5
Analyte	Unit	Guide Li	mits #2									
F1 (C6-C10)	ug/g	-	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F1-BTEX	ug/g	-	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F2 (C10-C16)	ug/g	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
F2-Naphth	ug/g	-	-	<10	<10	<10	<10	<10			<10	<10
F3 (C16-C34)	ug/g	-	-	<50	<50	<50	<50	<50	<50	<50	<50	276
F3-PAH	ug/g	-	-	<50	<50	<50	<50	<50			<50	276
F4 (C34-C50)	ug/g	-	-	<50	<50	<50	<50	<50	<50	<50	53	61
F4G-SG (GHH-Silica)	ug/g	-	-									
Total Hydrocarbons (C6-C50)	ug/g	-	-	<72	<72	<72	<72	<72	<72	<72	<72	336
Chrom. to baseline at nC50		-	-	YES	YES							
Surrogate: 2-Bromobenzotrifluoride	%	-	-	97.6	90.0	95.3	90.9	93.3	93.0	94.3	93.3	92.9
Surrogate: 3,4-Dichlorotoluene	%	-	-	96.8	89.5	90.0	83.5	89.1	84.4	86.0	87.8	88.1

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 14 of 20

20-AUG-21 09:42 (MT)

Hydrocarbons - SOIL

riyurocarbons - SOIL					
			Lab ID	L2625638-10	L2625638-11
		Sampl	e Date	10-AUG-21	10-AUG-21
		San	iple ID	210 20-21.5	209 0-5
Analysia	Unit	Guide #1	Limits #2		
Analyte					
F1 (C6-C10)	ug/g	-	-	<5.0	<5.0
F1-BTEX	ug/g	-	-	<5.0	<5.0
F2 (C10-C16)	ug/g	-	-	<10	<10
F2-Naphth	ug/g	-	-	<10	<10
F3 (C16-C34)	ug/g	-	-	72	63
F3-PAH	ug/g	-	-	72	63
F4 (C34-C50)	ug/g	-	-	<50	196
F4G-SG (GHH-Silica)	ug/g	-	-		680
Total Hydrocarbons (C6-C50)	ug/g	-	-	<72	259
Chrom. to baseline at nC50		-	-	YES	NO
Surrogate: 2-Bromobenzotrifluoride	%	-	-	95.4	82.2
Surrogate: 3,4-Dichlorotoluene	%	-	-	82.4	88.3

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 15 of 20

20-AUG-21 09:42 (MT)

Polycyclic Aromatic Hydrocarbons - SOIL

			Lab ID	L2625638-1	L2625638-2	L2625638-3	L2625638-4	L2625638-5	L2625638-8	L2625638-9	L2625638-10	L2625638-11
		Sampl		09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	10-AUG-21	10-AUG-21	10-AUG-21
		Sam	ple ID	101 0-5	101 10-15	102 0-5	102 15-20	103 0-5	104 15-17.5	210 0-5	210 20-21.5	209 0-5
Analyte	Unit	Guide #1	Limits #2									
Acenaphthene	ug/g	-	-	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050
Acenaphthylene	ug/g	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Anthracene	ug/g	-	-	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Benzo(a)anthracene	ug/g	-	-	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Benzo(a)pyrene	ug/g	-	-	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Benzo(b&j)fluoranthene	ug/g	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050
Benzo(g,h,i)perylene	ug/g	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050
Benzo(k)fluoranthene	ug/g	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050
Chrysene	ug/g	-	-	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Dibenz(a,h)anthracene	ug/g	-	-	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Fluoranthene	ug/g	-	-	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050
Fluorene	ug/g	-	-	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Indeno(1,2,3-cd)pyrene	ug/g	-	-	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050
1+2-Methylnaphthalenes	ug/g	-	-	<0.042	< 0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042	<0.042
1-Methylnaphthalene	ug/g	-	-	<0.030	<0.030	<0.030	<0.030	<0.030	< 0.030	< 0.030	<0.030	<0.030
2-Methylnaphthalene	ug/g	-	-	<0.030	< 0.030	<0.030	<0.030	<0.030	<0.030	< 0.030	<0.030	<0.030
Naphthalene	ug/g	-	-	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	< 0.013	<0.013	<0.013
Phenanthrene	ug/g	-	-	<0.046	<0.046	<0.046	<0.046	<0.046	<0.046	<0.046	<0.046	<0.046
Pyrene	ug/g	-	-	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050
Surrogate: 2-Fluorobiphenyl	%	-	-	84.7	86.2	83.1	90.6	82.0	85.2	84.5	84.7	80.4
Surrogate: d14-Terphenyl	%	-	-	86.6	87.8	81.5	88.7	80.0	86.1	85.6	88.4	79.5

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D....

Job Reference: KD

PAGE 16 of 20

20-AUG-21 09:42 (MT)

Polychlorinated Biphenyls - SOIL

i organiamatea Biphangie	00.2								
			Lab ID	L2625638-3	L2625638-4	L2625638-5	L2625638-6	L2625638-7	L2625638-10
		Sampl	e Date	09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	09-AUG-21	10-AUG-21
		San	nple ID	102 0-5	102 15-20	103 0-5	103 20-25	104 0-5	210 20-21.5
Analyte	Unit	Guide #1	Limits #2						
Aroclor 1242	ug/g	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Aroclor 1248	ug/g	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Aroclor 1254	ug/g	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Aroclor 1260	ug/g	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Total PCBs	ug/g	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Surrogate: d14-Terphenyl	%	-	-	101.4	104.4	102.2	107.9	102.5	102.1

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2625638 CONT'D.... Job Reference: KD PAGE 17 of 20 20-AUG-21 09:42 (MT)

Qualifiers for Individual Parameters Listed:

Qualifier Description SAR:M Reported SAR represents a maximum value. Actual SAR may be lower if both Ca and Mg were detectable.

Methods Listed (if applicable):

ALS Test Code Matrix **Test Description** Method Reference** B-HWS-R511-WT Soil Boron-HWE-O.Reg 153/04 (July 2011) HW EXTR, EPA 6010B

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CN-WAD-R511-WT Soil Cvanide (WAD)-O.Reg 153/04 (July MOE 3015/APHA 4500CN I-WAD 2011)

The sample is extracted with a strong base for 16 hours, and then filtered. The filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CR-CR6-IC-WT Soil Hexavalent Chromium in Soil SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-WT Soil Conductivity (EC) **MOEE E3138**

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S **Parameters**

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

1. All extraction and analysis holding times were met.

L2625638 CONT'D....
Job Reference: KD
PAGE 18 of 20
20-AUG-21 09:42 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.

3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Soil

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011)

CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sq is analyzed gravimetrically.

Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sg: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sq cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F4G-ADD-511-WT

Soil

F4G SG-O.Reg 153/04 (July 2011)

MOE DECPH-E3398/CCME TIER 1

F4G, gravimetric analysis, is determined if the chromatogram does not return to baseline at or before C50. A soil sample is extracted with a solvent mix, the solvent is evaporated and the weight of the residue is determined.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-200.2-CVAA-WT

Soil

Mercury in Soil by CVAAS

EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

L2625638 CONT'D....
Job Reference: KD
PAGE 19 of 20
20-AUG-21 09:42 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

METHYLNAPS-CALC-WT Soil ABN-Calculated Parameters SW846 8270

MOISTURE-WT Soil % Moisture CCME PHC in Soil - Tier 1 (mod)

PAH-511-WT Soil PAH-O.Reg 153/04 (July 2011) SW846 3510/8270

A representative sub-sample of soil is fortified with deuterium-labelled surrogates and a mechanical shaking technique used to extract the sample with a mixture of methanol and toluene. The extracts are concentrated and analyzed by GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PCB-511-WT Soil PCB-O.Reg 153/04 (July 2011) SW846 3510/8082

An aliquot of a solid sample is extracted with a solvent, extract is cleaned up and analyzed on the GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT Soil pH MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

SAR-R511-WT Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-1,3-DCP-CALC-WT Soil Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT Soil VOC-O.Reg 153/04 (July 2011) SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

L2625638 CONT'D....
Job Reference: KD
PAGE 20 of 20
20-AUG-21 09:42 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

XYLENES-SUM-CALC-WT Soil Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

WT

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2625638 Report Date: 20-AUG-21 Page 1 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HWS-R511-WT	Soil							
Batch R5556322 WG3599027-4 DUP Boron (B), Hot Water E		L2625638-9 <0.10	<0.10	RPD-NA	ug/g	N/A	30	18-AUG-21
WG3599027-2 IRM Boron (B), Hot Water E	Ext.	WT SAR4	102.4		%		70-130	18-AUG-21
WG3599027-3 LCS Boron (B), Hot Water E	ext.		100.0		%		70-130	18-AUG-21
WG3599027-1 MB Boron (B), Hot Water E	Ext.		<0.10		ug/g		0.1	18-AUG-21
CN-WAD-R511-WT	Soil							
Batch R5549545	5							
WG3595407-3 DUP Cyanide, Weak Acid D	iss	L2625217-1 <0.050	<0.050	RPD-NA	ug/g	N/A	35	13-AUG-21
WG3595407-2 LCS Cyanide, Weak Acid D	iss		93.4		%		80-120	13-AUG-21
WG3595407-1 MB Cyanide, Weak Acid D	iss		<0.050		ug/g		0.05	13-AUG-21
WG3595407-4 MS Cyanide, Weak Acid D	iss	L2625217-1	99.1		%		70-130	13-AUG-21
CR-CR6-IC-WT	Soil							
Batch R5551956	5							
WG3595762-4 CRM Chromium, Hexavalent		WT-SQC012	110.6		%		70-130	16-AUG-21
WG3595762-3 DUP Chromium, Hexavalent	:	L2625527-6 <0.20	<0.20	RPD-NA	ug/g	N/A	35	16-AUG-21
WG3595762-2 LCS Chromium, Hexavalent			88.1		%		80-120	16-AUG-21
WG3595762-1 MB Chromium, Hexavalent			<0.20		ug/g		0.2	16-AUG-21
EC-WT	Soil							
Batch R5556431								
WG3598983-4 DUP Conductivity		WG3598983-3 0.357	0.327		mS/cm	8.8	20	18-AUG-21
WG3598983-2 IRM Conductivity		WT SAR4	106.6		%		70-130	18-AUG-21
WG3599413-1 LCS Conductivity			98.9		%		90-110	18-AUG-21
WG3598983-1 MB								

Workorder: L2625638 Report Date: 20-AUG-21 Page 2 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-WT		Soil							
Batch R5: WG3598983-1 Conductivity	556431 MB			<0.0040		mS/cm		0.004	18-AUG-21
F1-HS-511-WT		Soil							
	549698								
WG3595982-4 F1 (C6-C10)	DUP		WG3595982-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	13-AUG-21
WG3595982-2 F1 (C6-C10)	LCS			103.7		%		80-120	13-AUG-21
WG3595982-1	MB			<5.0				E	40 4110 04
F1 (C6-C10) Surrogate: 3,4-D	Siablarata	luono		99.4		ug/g %		5 60-140	13-AUG-21
WG3595982-5	MS	iluerie	WG3595982-3	99.4		76		00-140	13-AUG-21
F1 (C6-C10)	IVIS		WG3393962-3	116.2		%		60-140	13-AUG-21
F2-F4-511-WT		Soil							
Batch R5	552240								
WG3595880-3 F2 (C10-C16)	DUP		WG3595880-5 10	<10	DDD NA	ua/a	NI/A	20	40 4110 04
F3 (C16-C34)			146	168	RPD-NA	ug/g ug/g	N/A	30	16-AUG-21
F4 (C34-C50)			208	205		ug/g ug/g	14 1.7	30 30	16-AUG-21 16-AUG-21
WG3595880-2	LCS		200	203		ug/g	1.7	30	16-AUG-21
F2 (C10-C16)	LUS			89.1		%		80-120	16-AUG-21
F3 (C16-C34)				82.9		%		80-120	16-AUG-21
F4 (C34-C50)				85.9		%		80-120	16-AUG-21
WG3595880-1 F2 (C10-C16)	MB			<10		ug/g		10	16-AUG-21
F3 (C16-C34)				<50		ug/g		50	16-AUG-21
F4 (C34-C50)				<50		ug/g		50	16-AUG-21
Surrogate: 2-Bro	omobenzo	otrifluoride		89.9		%		60-140	16-AUG-21
WG3595880-4	MS		WG3595880-5						
F2 (C10-C16)				88.3		%		60-140	16-AUG-21
F3 (C16-C34)				85.0		%		60-140	16-AUG-21
F4 (C34-C50)				91.5		%		60-140	16-AUG-21
	554661								
WG3595471-3 F2 (C10-C16)	DUP		WG3595471-5 <10	<10	DDD NA	ua/a	NI/A	20	47 ALIC 24
12 (010-010)			\10	<10	RPD-NA	ug/g	N/A	30	17-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 3 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F2-F4-511-WT		Soil							
Batch R5	554661								
WG3595471-3	DUP		WG3595471-5						
F3 (C16-C34)			218	195		ug/g	11	30	17-AUG-21
F4 (C34-C50)			80	108	J	ug/g	28	100	17-AUG-21
WG3595471-2 F2 (C10-C16)	LCS			92.1		%		80-120	17-AUG-21
F3 (C16-C34)				90.2		%		80-120	17-AUG-21
F4 (C34-C50)				92.0		%		80-120	17-AUG-21
WG3595471-1 F2 (C10-C16)	MB			<10		ug/g		10	17-AUG-21
F3 (C16-C34)				<50		ug/g		50	17-AUG-21
F4 (C34-C50)				<50		ug/g ug/g		50	17-AUG-21 17-AUG-21
Surrogate: 2-Br	omohenz	rotrifluoride		95.4		ug/g %		60-140	17-AUG-21 17-AUG-21
WG3595471-4	MS	-ott illuoriuu	WG3595471-5	JJ.7		70		00 140	17-AUG-21
F2 (C10-C16)	IVIO		VVG3J3347 1-3	92.5		%		60-140	17-AUG-21
F3 (C16-C34)				89.9		%		60-140	17-AUG-21
F4 (C34-C50)				95.6		%		60-140	17-AUG-21
F4G-ADD-511-WT		Soil							
Batch R5	554976								
WG3599024-3 F4G-SG (GHH-	DUP Silica)		L2625497-3 1120	990		ug/g	6.5	40	13-AUG-21
WG3599024-2 F4G-SG (GHH-	LCS Silica)			66.0		%		60-140	13-AUG-21
WG3599024-1	MB								- ·
F4G-SG (GHH-				<250		ug/g		250	13-AUG-21
HG-200.2-CVAA-W	т	Soil							
	5555726								
WG3598835-2 Mercury (Hg)	CRM		WT-SS-2	99.5		%		70-130	18-AUG-21
WG3598835-6 Mercury (Hg)	DUP		WG3598835-5 <0.0050	<0.0050	RPD-NA	ug/g	N/A	40	18-AUG-21
WG3598835-3 Mercury (Hg)	LCS			101.0		%		80-120	18-AUG-21
WG3598835-1 Mercury (Hg)	МВ			<0.0050		mg/kg		0.005	18-AUG-21
MET-200.2-CCMS-	WT	Soil							

Workorder: L2625638 Report Date: 20-AUG-21 Page 4 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5556067								
WG3598835-2 CRM		WT-SS-2						
Antimony (Sb)			110.2		%		70-130	18-AUG-21
Arsenic (As)			124.4		%		70-130	18-AUG-21
Barium (Ba)			119.5		%		70-130	18-AUG-21
Beryllium (Be)			114.6		%		70-130	18-AUG-21
Boron (B)			9.8		mg/kg		3.5-13.5	18-AUG-21
Cadmium (Cd)			117.0		%		70-130	18-AUG-21
Chromium (Cr)			116.4		%		70-130	18-AUG-21
Cobalt (Co)			118.0		%		70-130	18-AUG-21
Copper (Cu)			120.0		%		70-130	18-AUG-21
Lead (Pb)			114.7		%		70-130	18-AUG-21
Molybdenum (Mo)			117.7		%		70-130	18-AUG-21
Nickel (Ni)			119.9		%		70-130	18-AUG-21
Selenium (Se)			0.13		mg/kg		0-0.34	18-AUG-21
Silver (Ag)			117.9		%		70-130	18-AUG-21
Thallium (TI)			0.090		mg/kg		0.029-0.129	18-AUG-21
Uranium (U)			114.7		%		70-130	18-AUG-21
Vanadium (V)			119.1		%		70-130	18-AUG-21
Zinc (Zn)			112.5		%		70-130	18-AUG-21
WG3598835-6 DUP Antimony (Sb)		WG3598835 <0.10	-5 <0.10	RPD-NA	ug/g	N/A	30	18-AUG-21
Arsenic (As)		1.41	1.47		ug/g	4.3	30	18-AUG-21
Barium (Ba)		37.5	39.0		ug/g	3.9	40	18-AUG-21
Beryllium (Be)		0.21	0.21		ug/g	2.0	30	18-AUG-21
Boron (B)		<5.0	<5.0	RPD-NA	ug/g	N/A	30	18-AUG-21
Cadmium (Cd)		0.038	0.033		ug/g	13	30	18-AUG-21
Chromium (Cr)		14.4	14.8		ug/g	3.2	30	18-AUG-21
Cobalt (Co)		2.80	2.81		ug/g	0.1	30	18-AUG-21
Copper (Cu)		6.52	6.71		ug/g	2.8	30	18-AUG-21
Lead (Pb)		2.21	2.32		ug/g	4.7	40	18-AUG-21
Molybdenum (Mo)		1.75	1.82		ug/g	3.7	40	18-AUG-21
Nickel (Ni)		7.05	6.96		ug/g	1.3	30	18-AUG-21
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	18-AUG-21
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	18-AUG-21
-···-· (· · · / /				IN DINA	- - 	13//1		107100 21

Workorder: L2625638 Report Date: 20-AUG-21 Page 5 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Uranium (U) 0.472 0.598 ug/g 24 30 18-A Vanadium (V) 17.9 18.1 ug/g 1.3 30 18-A Zinc (Zn) 23.3 23.0 ug/g 1.2 30 18-A	UG-21 UG-21 UG-21 UG-21 UG-21
WG3598835-6 DUP WG3598835-5 CO.050 CO.050 RPD-NA ug/g N/A 30 18-AI Uranium (U) 0.472 0.598 ug/g 24 30 18-AI Vanadium (V) 17.9 18.1 ug/g 1.3 30 18-AI Zinc (Zn) 23.3 23.0 ug/g 1.2 30 18-AI	UG-21 UG-21 UG-21 UG-21
Thallium (TI) <0.050 <0.050 RPD-NA ug/g N/A 30 18-Al Uranium (U) 0.472 0.598 ug/g 24 30 18-Al Vanadium (V) 17.9 18.1 ug/g 1.3 30 18-Al Zinc (Zn) 23.3 23.0 ug/g 1.2 30 18-Al	UG-21 UG-21 UG-21 UG-21
Uranium (U) 0.472 0.598 ug/g 24 30 18-Al Vanadium (V) 17.9 18.1 ug/g 1.3 30 18-Al Zinc (Zn) 23.3 23.0 ug/g 1.2 30 18-Al	UG-21 UG-21 UG-21 UG-21
Vanadium (V) 17.9 18.1 ug/g 1.3 30 18-Al Zinc (Zn) 23.3 23.0 ug/g 1.2 30 18-Al	UG-21 UG-21 UG-21
Zinc (Zn) 23.3 23.0 ug/g 1.2 30 18-A	UG-21 UG-21
	UG-21
WG3598835-4 LCS Antimony (Sb) 100.3 % 80-120 18-Al	10.04
Arsenic (As) 104.5 % 80-120 18-A	UG-21
Barium (Ba) 102.9 % 80-120 18-A	UG-21
Beryllium (Be) 94.6 % 80-120 18-A	UG-21
Boron (B) 91.8 % 80-120 18-A	UG-21
Cadmium (Cd) 103.5 % 80-120 18-A	UG-21
Chromium (Cr) 105.7 % 80-120 18-A	UG-21
Cobalt (Co) 104.5 % 80-120 18-A	UG-21
Copper (Cu) 103.5 % 80-120 18-A	UG-21
Lead (Pb) 97.9 % 80-120 18-A	UG-21
Molybdenum (Mo) 99.2 % 80-120 18-A	UG-21
Nickel (Ni) 104.4 % 80-120 18-A	UG-21
Selenium (Se) 100.8 % 80-120 18-A	UG-21
Silver (Ag) 95.9 % 80-120 18-A	UG-21
Thallium (TI) 98.2 % 80-120 18-A	UG-21
Uranium (U) 100.4 % 80-120 18-A	UG-21
Vanadium (V) 106.5 % 80-120 18-A	UG-21
Zinc (Zn) 98.4 % 80-120 18-A	UG-21
WG3598835-1 MB	
	UG-21
Lead (Pb) <0.50 mg/kg 0.5 18-A	UG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 6 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5556067 WG3598835-1 MB Molybdenum (Mo)			<0.10		mg/kg		0.1	18-AUG-21
Nickel (Ni)			<0.50		mg/kg		0.5	18-AUG-21
Selenium (Se)			<0.20		mg/kg		0.2	18-AUG-21
Silver (Ag)			<0.10		mg/kg		0.1	18-AUG-21
Thallium (TI)			< 0.050		mg/kg		0.05	18-AUG-21
Uranium (U)			< 0.050		mg/kg		0.05	18-AUG-21
Vanadium (V)			<0.20		mg/kg		0.2	18-AUG-21
Zinc (Zn)			<2.0		mg/kg		2	18-AUG-21
MOISTURE-WT	Soil							
Batch R5549221								
WG3595604-3 DUP % Moisture		L2625478-1 7.92	7.13		%	11	20	13-AUG-21
WG3595604-2 LCS % Moisture			99.3		%		90-110	13-AUG-21
WG3595604-1 MB % Moisture			<0.25		%		0.25	13-AUG-21
Batch R5549302								
WG3595886-3 DUP % Moisture		L2625638-10 15.4	15.3		%	1.0	20	13-AUG-21
WG3595886-2 LCS % Moisture			98.7		%		90-110	13-AUG-21
WG3595886-1 MB % Moisture			<0.25		%		0.25	13-AUG-21
PAH-511-WT	Soil							
Batch R5549890								
WG3595757-3 DUP		WG3595757-5			,			
1-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-AUG-21
2-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-AUG-21
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Benzo(a)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Benzo(a)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Benzo(b&j)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Benzo(g,h,i)perylene		<0.050	<0.050		ug/g			

Workorder: L2625638 Report Date: 20-AUG-21 Page 7 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Soil							
	WG3595757-5	0.050			N1/A	40	
							13-AUG-21
							13-AUG-21
							13-AUG-21
							13-AUG-21
							13-AUG-21
							13-AUG-21
							13-AUG-21
			RPD-NA	ug/g		40	13-AUG-21
			RPD-NA		N/A	40	13-AUG-21
	<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
		89.0		%		50-140	13-AUG-21
							13-AUG-21
							13-AUG-21
							13-AUG-21
		73.7		%			13-AUG-21
		86.8		%		50-140	13-AUG-21
		72.5		%		50-140	13-AUG-21
		82.3		%		50-140	13-AUG-21
		77.1		%		50-140	13-AUG-21
		78.4		%		50-140	13-AUG-21
		87.5		%		50-140	13-AUG-21
		80.0		%		50-140	13-AUG-21
		83.9		%		50-140	13-AUG-21
		85.6		%		50-140	13-AUG-21
		78.1		%		50-140	13-AUG-21
		83.8		%		50-140	13-AUG-21
		84.3		%		50-140	13-AUG-21
		82.0		%		50-140	13-AUG-21
		.0.000				0.00	
							13-AUG-21
							13-AUG-21
							13-AUG-21
		<0.050		ug/g		0.05	13-AUG-21
		Soil WG3595757-5 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.040 <0.046	WG3595757-5 <0.050	Soil WG3595757-5 <0.050	Soil WG3595757-5 C.0.050 RPD-NA ug/g <0.050	WG3595757-5	WG3595757-5

Workorder: L2625638 Report Date: 20-AUG-21 Page 8 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R554989	90							
WG3595757-1 MB Anthracene			.0.050		/a		0.05	
Benzo(a)anthracene			<0.050 <0.050		ug/g		0.05	13-AUG-21
			<0.050		ug/g		0.05	13-AUG-21
Benzo(a)pyrene			<0.050		ug/g		0.05	13-AUG-21
Benzo(b&j)fluoranther	ie				ug/g		0.05	13-AUG-21
Benzo(g,h,i)perylene			<0.050		ug/g		0.05	13-AUG-21
Benzo(k)fluoranthene			<0.050		ug/g		0.05	13-AUG-21
Chrysene	_		<0.050		ug/g			13-AUG-21
Dibenz(a,h)anthracen	е		<0.050		ug/g		0.05	13-AUG-21
Fluoranthene			<0.050		ug/g		0.05	13-AUG-21
Fluorene			<0.050		ug/g		0.05	13-AUG-21
Indeno(1,2,3-cd)pyrer	ie		<0.050		ug/g		0.05	13-AUG-21
Naphthalene			<0.013		ug/g		0.013	13-AUG-21
Phenanthrene			<0.046		ug/g		0.046	13-AUG-21
Pyrene			<0.050		ug/g		0.05	13-AUG-21
Surrogate: 2-Fluorobij	•		82.6		%		50-140	13-AUG-21
Surrogate: d14-Terph	enyl		84.1		%		50-140	13-AUG-21
WG3595757-4 MS 1-Methylnaphthalene		WG3595757-5	93.9		%		50-140	13-AUG-21
2-Methylnaphthalene			91.0		%		50-140	13-AUG-21
Acenaphthene			90.9		%		50-140	13-AUG-21
Acenaphthylene			87.5		%		50-140	13-AUG-21
Anthracene			78.0		%		50-140	13-AUG-21
Benzo(a)anthracene			92.7		%		50-140	13-AUG-21
Benzo(a)pyrene			77.8		%		50-140	13-AUG-21
Benzo(b&j)fluoranther	ne		88.0		%		50-140	13-AUG-21
Benzo(g,h,i)perylene			84.2		%		50-140	13-AUG-21
Benzo(k)fluoranthene			85.6		%		50-140	13-AUG-21
Chrysene			93.9		%		50-140	13-AUG-21
Dibenz(a,h)anthracen	е		86.7		%		50-140	13-AUG-21
Fluoranthene			89.4		%		50-140	13-AUG-21
Fluorene			89.2		%		50-140	13-AUG-21
Indeno(1,2,3-cd)pyrer	ne		83.9		%		50-140	13-AUG-21
Naphthalene			88.6		%		50-140	13-AUG-21
Phenanthrene			90.0		%		50-140	13-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 9 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Гest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5549890 WG3595757-4 MS Pyrene		WG3595757-	5 87.2		%		50-140	13-AUG-21
. ,			VI.E		,•		30-140	13-700-21
Batch R5555697								
WG3596432-3 DUP		WG3596432-			,			
1-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	18-AUG-21
2-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	18-AUG-21
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Benzo(a)anthracene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Benzo(a)pyrene		< 0.050	< 0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Benzo(b&j)fluoranthene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Benzo(g,h,i)perylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Benzo(k)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Chrysene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Dibenz(a,h)anthracene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Fluoranthene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Fluorene		< 0.050	<0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Indeno(1,2,3-cd)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
Naphthalene		<0.013	<0.013	RPD-NA	ug/g	N/A	40	18-AUG-21
Phenanthrene		<0.046	<0.046	RPD-NA	ug/g	N/A	40	18-AUG-21
Pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	18-AUG-21
WG3596432-2 LCS								
1-Methylnaphthalene			92.9		%		50-140	18-AUG-21
2-Methylnaphthalene			89.1		%		50-140	18-AUG-21
Acenaphthene			89.0		%		50-140	18-AUG-21
Acenaphthylene			84.9		%		50-140	18-AUG-21
Anthracene			77.9		%		50-140	18-AUG-21
Benzo(a)anthracene			88.2		%		50-140	18-AUG-21
Benzo(a)pyrene			76.2		%		50-140	18-AUG-21
Benzo(b&j)fluoranthene			82.8		%		50-140	18-AUG-21
Benzo(g,h,i)perylene			78.4		%		50-140	18-AUG-21
Benzo(k)fluoranthene			85.1		%		50-140	18-AUG-21
Chrysene			94.3		%		50-140	18-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 10 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5555697								
WG3596432-2 LCS			70.0		0/			
Dibenz(a,h)anthracene Fluoranthene			79.8		%		50-140	18-AUG-21
			83.0		%		50-140	18-AUG-21
Fluorene			86.4		%		50-140	18-AUG-21
Indeno(1,2,3-cd)pyrene			80.0		%		50-140	18-AUG-21
Naphthalene			87.7		%		50-140	18-AUG-21
Phenanthrene			89.1		%		50-140	18-AUG-21
Pyrene			83.7		%		50-140	18-AUG-21
WG3596432-1 MB 1-Methylnaphthalene			<0.030		ug/g		0.03	18-AUG-21
2-Methylnaphthalene			<0.030		ug/g		0.03	18-AUG-21
Acenaphthene			<0.050		ug/g		0.05	18-AUG-21
Acenaphthylene			<0.050		ug/g		0.05	18-AUG-21
Anthracene			<0.050		ug/g		0.05	18-AUG-21
Benzo(a)anthracene			< 0.050		ug/g		0.05	18-AUG-21
Benzo(a)pyrene			< 0.050		ug/g		0.05	18-AUG-21
Benzo(b&j)fluoranthene			< 0.050		ug/g		0.05	18-AUG-21
Benzo(g,h,i)perylene			< 0.050		ug/g		0.05	18-AUG-21
Benzo(k)fluoranthene			<0.050		ug/g		0.05	18-AUG-21
Chrysene			<0.050		ug/g		0.05	18-AUG-21
Dibenz(a,h)anthracene			<0.050		ug/g		0.05	18-AUG-21
Fluoranthene			< 0.050		ug/g		0.05	18-AUG-21
Fluorene			< 0.050		ug/g		0.05	18-AUG-21
Indeno(1,2,3-cd)pyrene			< 0.050		ug/g		0.05	18-AUG-21
Naphthalene			<0.013		ug/g		0.013	18-AUG-21
Phenanthrene			<0.046		ug/g		0.046	18-AUG-21
Pyrene			< 0.050		ug/g		0.05	18-AUG-21
Surrogate: 2-Fluorobipho	enyl		86.3		%		50-140	18-AUG-21
Surrogate: d14-Terphen	yl		83.7		%		50-140	18-AUG-21
WG3596432-4 MS 1-Methylnaphthalene		WG3596432-5	93.0		%		50-140	18-AUG-21
2-Methylnaphthalene			88.1		%		50-140	18-AUG-21
Acenaphthene			88.6		%		50-140	18-AUG-21
Acenaphthylene			85.3		%		50-140	18-AUG-21
Anthracene			77.6		%		50-140	18-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 11 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5555697								
WG3596432-4 MS		WG3596432-5	00.0		0/			
Benzo(a)anthracene			89.3		%		50-140	18-AUG-21
Benzo(a)pyrene			75.4		%		50-140	18-AUG-21
Benzo(b&j)fluoranthene			81.8		%		50-140	18-AUG-21
Benzo(g,h,i)perylene			77.7		%		50-140	18-AUG-21
Benzo(k)fluoranthene			85.5		%		50-140	18-AUG-21
Chrysene			95.0		%		50-140	18-AUG-21
Dibenz(a,h)anthracene			79.0		%		50-140	18-AUG-21
Fluoranthene			82.9		%		50-140	18-AUG-21
Fluorene			86.0		%		50-140	18-AUG-21
Indeno(1,2,3-cd)pyrene			78.4		%		50-140	18-AUG-21
Naphthalene			86.6		%		50-140	18-AUG-21
Phenanthrene			88.5		%		50-140	18-AUG-21
Pyrene			82.8		%		50-140	18-AUG-21
Batch R5560278								
WG3599738-3 DUP 1-Methylnaphthalene		WG3599738-5 <0.030	<0.030	RPD-NA	ug/g	N/A	40	19-AUG-21
2-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	19-AUG-21
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Benzo(a)anthracene		<0.050	<0.050			N/A		
		<0.050	<0.050	RPD-NA	ug/g		40	19-AUG-21
Benzo(a)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Benzo(b&j)fluoranthene				RPD-NA	ug/g	N/A	40	19-AUG-21
Benzo(g,h,i)perylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Benzo(k)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Chrysene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Dibenz(a,h)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Fluorene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Indeno(1,2,3-cd)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21
Naphthalene		<0.013	<0.013	RPD-NA	ug/g	N/A	40	19-AUG-21
Phenanthrene		<0.046	<0.046	RPD-NA	ug/g	N/A	40	19-AUG-21
Pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	19-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 12 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5560278								
WG3599738-2 LCS			0.4.0		0/			
1-Methylnaphthalene			94.0		%		50-140	19-AUG-21
2-Methylnaphthalene			90.3		%		50-140	19-AUG-21
Acenaphthene			89.6		%		50-140	19-AUG-21
Acenaphthylene			84.3		%		50-140	19-AUG-21
Anthracene			76.2		%		50-140	19-AUG-21
Benzo(a)anthracene			86.8		%		50-140	19-AUG-21
Benzo(a)pyrene			74.1		%		50-140	19-AUG-21
Benzo(b&j)fluoranthene			83.4		%		50-140	19-AUG-21
Benzo(g,h,i)perylene			89.8		%		50-140	19-AUG-21
Benzo(k)fluoranthene			85.1		%		50-140	19-AUG-21
Chrysene			95.0		%		50-140	19-AUG-21
Dibenz(a,h)anthracene			90.5		%		50-140	19-AUG-21
Fluoranthene			86.6		%		50-140	19-AUG-21
Fluorene			87.4		%		50-140	19-AUG-21
Indeno(1,2,3-cd)pyrene			85.5		%		50-140	19-AUG-21
Naphthalene			88.4		%		50-140	19-AUG-21
Phenanthrene			89.8		%		50-140	19-AUG-21
Pyrene			86.4		%		50-140	19-AUG-21
WG3599738-1 MB			0.000				0.02	
1-Methylnaphthalene			<0.030		ug/g		0.03	19-AUG-21
2-Methylnaphthalene			<0.030		ug/g		0.03	19-AUG-21
Acenaphthene			<0.050		ug/g		0.05	19-AUG-21
Acenaphthylene			<0.050		ug/g		0.05	19-AUG-21
Anthracene			<0.050		ug/g		0.05	19-AUG-21
Benzo(a)anthracene			<0.050		ug/g		0.05	19-AUG-21
Benzo(a)pyrene			<0.050		ug/g		0.05	19-AUG-21
Benzo(b&j)fluoranthene			<0.050		ug/g		0.05	19-AUG-21
Benzo(g,h,i)perylene			<0.050		ug/g		0.05	19-AUG-21
Benzo(k)fluoranthene			<0.050		ug/g		0.05	19-AUG-21
Chrysene			<0.050		ug/g		0.05	19-AUG-21
Dibenz(a,h)anthracene			<0.050		ug/g		0.05	19-AUG-21
Fluoranthene			<0.050		ug/g		0.05	19-AUG-21
Fluorene			<0.050		ug/g		0.05	19-AUG-21
Indeno(1,2,3-cd)pyrene			<0.050		ug/g		0.05	19-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 13 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R55602	78							
WG3599738-1 MB			0.040		/a		0.012	
Naphthalene			<0.013		ug/g		0.013	19-AUG-21
Phenanthrene			<0.046		ug/g		0.046	19-AUG-21
Pyrene			<0.050		ug/g		0.05	19-AUG-21
Surrogate: 2-Fluorob			85.1		%		50-140	19-AUG-21
Surrogate: d14-Terp	•		82.1		%		50-140	19-AUG-21
WG3599738-4 MS 1-Methylnaphthalene		WG3599738	-5 83.6		%		50-140	19-AUG-21
2-Methylnaphthalene			80.8		%		50-140	19-AUG-21
Acenaphthene			80.0		%		50-140	19-AUG-21
Acenaphthylene			76.0		%		50-140	19-AUG-21
Anthracene			69.1		%		50-140	19-AUG-21
Benzo(a)anthracene			81.4		%		50-140	19-AUG-21
Benzo(a)pyrene			68.9		%		50-140	19-AUG-21
Benzo(b&j)fluoranthe	ene		75.4		%		50-140	19-AUG-21
Benzo(g,h,i)perylene			79.4		%		50-140	19-AUG-21
Benzo(k)fluoranthen	Э		75.7		%		50-140	19-AUG-21
Chrysene			84.5		%		50-140	19-AUG-21
Dibenz(a,h)anthrace	ne		80.4		%		50-140	19-AUG-21
Fluoranthene			79.1		%		50-140	19-AUG-21
Fluorene			78.8		%		50-140	19-AUG-21
Indeno(1,2,3-cd)pyre	ne		79.1		%		50-140	19-AUG-21
Naphthalene			78.3		%		50-140	19-AUG-21
Phenanthrene			80.3		%		50-140	19-AUG-21
Pyrene			78.3		%		50-140	19-AUG-21
PCB-511-WT	Soil							
Batch R55519	76							
WG3595757-3 DU Aroclor 1242	P	WG3595757		DDD MA	110/0	N1/A	40	40 4110 04
Aroclor 1242 Aroclor 1248		<0.010 <0.010	<0.010	RPD-NA	ug/g	N/A	40	16-AUG-21
Aroclor 1254			<0.010	RPD-NA	ug/g	N/A	40	16-AUG-21
		<0.010	<0.010	RPD-NA	ug/g	N/A	40	16-AUG-21
Aroclor 1260	•	<0.010	<0.010	RPD-NA	ug/g	N/A	40	16-AUG-21
WG3595757-2 LC Aroclor 1242	5		82.2		%		60-140	16-AUG-21
Aroclor 1248			83.9		%		60-140	16-AUG-21
			00.0				00-140	10-A00-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 14 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Contact: Robb Hudson

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PCB-511-WT		Soil							
Batch R5	551976								
WG3595757-2	LCS					0.4			
Aroclor 1254				88.7		%		60-140	16-AUG-21
Aroclor 1260				113.2		%		60-140	16-AUG-21
WG3595757-1 Aroclor 1242	МВ			<0.010		ug/g		0.01	16-AUG-21
Aroclor 1248				<0.010		ug/g		0.01	16-AUG-21
Aroclor 1254				<0.010		ug/g		0.01	16-AUG-21
Aroclor 1260				<0.010		ug/g		0.01	16-AUG-21
Surrogate: d14-	Terpheny	4		94.4		%		60-140	16-AUG-21
WG3595757-4	MS		WG3595757-5						
Aroclor 1242				83.1		%		60-140	16-AUG-21
Aroclor 1254				90.2		%		60-140	16-AUG-21
Aroclor 1260				109.7		%		60-140	16-AUG-21
Batch R5	556176								
WG3596432-3	DUP		WG3596432-5	0.040					
Aroclor 1242			<0.010	<0.010	RPD-NA	ug/g	N/A	40	18-AUG-21
Aroclor 1248			<0.010	<0.010	RPD-NA	ug/g	N/A	40	18-AUG-21
Aroclor 1254			<0.010	<0.010	RPD-NA	ug/g	N/A	40	18-AUG-21
Aroclor 1260			<0.010	<0.010	RPD-NA	ug/g	N/A	40	18-AUG-21
WG3596432-2 Aroclor 1242	LCS			78.3		%		60-140	18-AUG-21
Aroclor 1248				85.3		%		60-140	18-AUG-21
Aroclor 1254				84.5		%		60-140	18-AUG-21
Aroclor 1260				98.8		%		60-140	18-AUG-21
WG3596432-1	МВ								
Aroclor 1242				<0.010		ug/g		0.01	18-AUG-21
Aroclor 1248				<0.010		ug/g		0.01	18-AUG-21
Aroclor 1254				<0.010		ug/g		0.01	18-AUG-21
Aroclor 1260				<0.010		ug/g		0.01	18-AUG-21
Surrogate: d14-	-Terpheny	/		97.8		%		60-140	18-AUG-21
WG3596432-4 Aroclor 1242	MS		WG3596432-5	78.6		%		60-140	18-AUG-21
Aroclor 1254				82.6		%		60-140	18-AUG-21
Aroclor 1260				98.0		%		60-140	18-AUG-21
PH-WT		Soil							

PH-WT Soil

Workorder: L2625638 Report Date: 20-AUG-21 Page 15 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WT	Soil							
Batch R5551537	•							
WG3596457-1 DUP pH		L2618013-7 7.21	7.30	J	pH units	0.09	0.3	16-AUG-21
WG3597712-1 LCS pH			7.05		pH units		6.9-7.1	16-AUG-21
Batch R5552133								
WG3595704-1 DUP pH		L2625478-1 7.80	7.79	J	pH units	0.01	0.3	16-AUG-21
WG3597668-1 LCS pH			6.98		pH units		6.9-7.1	16-AUG-21
SAR-R511-WT	Soil							
Batch R5557037	•							
WG3598983-4 DUP		WG3598983-3						
Calcium (Ca)		31.9	29.7		mg/L	7.1	30	18-AUG-21
Sodium (Na)		40.7	41.2		mg/L	1.2	30	18-AUG-21
Magnesium (Mg)		2.85	2.64		mg/L	7.7	30	18-AUG-21
WG3598983-2 IRM Calcium (Ca)		WT SAR4	115.9		%		70-130	18-AUG-21
Sodium (Na)			95.4		%		70-130	18-AUG-21
Magnesium (Mg)			113.7		%		70-130	18-AUG-21
WG3598983-5 LCS Calcium (Ca)			105.3		%		80-120	18-AUG-21
Sodium (Na)			104.6		%		80-120	18-AUG-21
Magnesium (Mg)			103.8		%		80-120	18-AUG-21
WG3598983-1 MB							00 .20	107.00 21
Calcium (Ca)			<0.50		mg/L		0.5	18-AUG-21
Sodium (Na)			<0.50		mg/L		0.5	18-AUG-21
Magnesium (Mg)			<0.50		mg/L		0.5	18-AUG-21
VOC-511-HS-WT	Soil							
Batch R5549698	}							
WG3595982-4 DUP		WG3595982-3			,			
1,1,1,2-Tetrachloroetha		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
1,1,2,2-Tetrachloroetha	ine	<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
1,1,1-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
1,1,2-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
1,1-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
1,1-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 16 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5549698								
WG3595982-4 DUP		WG3595982-			,			
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
1,2-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g ,	N/A	40	13-AUG-21
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g ,	N/A	40	13-AUG-21
1,2-Dichloropropane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	13-AUG-21
Benzene		<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	13-AUG-21
Bromodichloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Carbon tetrachloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Chlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
cis-1,2-Dichloroethylene	9	<0.050	< 0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
cis-1,3-Dichloropropene)	<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-AUG-21
Dibromochloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Dichlorodifluoromethan	е	<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	13-AUG-21
n-Hexane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Methylene Chloride		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
MTBE		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-AUG-21
Methyl Ethyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	13-AUG-21
Methyl Isobutyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	13-AUG-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	13-AUG-21
Styrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Tetrachloroethylene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	13-AUG-21
trans-1,2-Dichloroethyle	ene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-AUG-21
trans-1,3-Dichloroprope	ne	<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-AUG-21
Trichloroethylene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	13-AUG-21
Trichlorofluoromethane		<0.050	<0.050		ug/g			13-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 17 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Sociation Sciation	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG3595892-4 UIP Trichloroflucromethane WG3595892-2 Q-0,050 Q-0,020 RPD-NA ug/g N/A 40 13-AUG-21 Virryl chloride <0,020	VOC-511-HS-WT	Soil							
Trichiprofluoromethane <0.050	Batch R5549698	1							
Vinyl chloride <0.020 RPD-NA ug/g N/A 40 13-AUG-21 WG3556982-2 LCS 1.1.1.2-Tetrachloroethane 99.0 % 60-130 13-AUG-21 1.1.1.2-Tetrachloroethane 108.1 % 60-130 13-AUG-21 1.1.1-Trichloroethane 109.1 % 60-130 13-AUG-21 1.1-Dichloroethane 103.4 % 60-130 13-AUG-21 1.1-Dichloroethane 86.2 % 60-130 13-AUG-21 1.2-Dichloroethane 86.2 % 60-130 13-AUG-21 1.2-Dichloroethane 99.2 % 70-130 13-AUG-21 1.2-Dichloroethane 96.7 % 60-130 13-AUG-21 1.2-Dichloroethane 96.7 % 60-130 13-AUG-21 1.2-Dichloroethane 96.7 % 70-130 13-AUG-21 1.2-Dichloroethane 96.6 % 70-130 13-AUG-21 1.2-Dichloroethane 99.7 % 70-130 13-AUG-21 1.2-Dichloroethan									
WG3595982-2 LCS 1.1.1.2-Tetrachloroethane 99.0 % 60-130 13-AUG-21 1.1.1.2-Tetrachloroethane 108.1 % 60-130 13-AUG-21 1.1.1-Trichloroethane 99.1 % 60-130 13-AUG-21 1.1.1-Trichloroethane 103.4 % 60-130 13-AUG-21 1.1.1-Dichloroethane 92.8 % 60-130 13-AUG-21 1.1-Dichloroethane 86.2 % 60-130 13-AUG-21 1.2-Dichloroethane 100.7 % 70-130 13-AUG-21 1.2-Dichlorobenzene 98.2 % 70-130 13-AUG-21 1.2-Dichloroethane 96.7 % 60-130 13-AUG-21 1.2-Dichloroethane 96.7 % 60-130 13-AUG-21 1.2-Dichloroethane 96.7 % 60-130 13-AUG-21 1.2-Dichloroethane 96.7 % 70-130 13-AUG-21 1.2-Dichloroethane 96.6 % 70-130 13-AUG-21 1.2-Dichloroethane 95.7		•							
1,1,1,2-Tetrachloroethane 99.0 % 60-130 13-AUG-21 1,1,2,2-Tetrachloroethane 108.1 % 60-130 13-AUG-21 1,1,1-Trichloroethane 99.1 % 60-130 13-AUG-21 1,1,1-Trichloroethane 103.4 % 60-130 13-AUG-21 1,1-Dichloroethane 92.8 % 60-130 13-AUG-21 1,1-Dichloroethylene 86.2 % 60-130 13-AUG-21 1,2-Dichloroethylene 86.2 % 70-130 13-AUG-21 1,2-Dichloroethane 100.7 % 70-130 13-AUG-21 1,2-Dichloroethane 96.7 % 60-130 13-AUG-21 1,2-Dichloroptopropane 100.5 % 70-130 13-AUG-21 1,2-Dichloroptopane 100.5 % 70-130 13-AUG-21 1,3-Dichlorobenzene 96.6 % 70-130 13-AUG-21 1,4-Dichlorobenzene 95.7 % 70-130 13-AUG-21 Acetone 102.6 % 60-140 13-AUG-21 Bernzene 99.8 % 70-130 <td>-</td> <td></td> <td><0.020</td> <td><0.020</td> <td>RPD-NA</td> <td>ug/g</td> <td>N/A</td> <td>40</td> <td>13-AUG-21</td>	-		<0.020	<0.020	RPD-NA	ug/g	N/A	40	13-AUG-21
1.1,1-Trichloroethane 99.1 % 60-130 13-AUG-21 1.1,2-Trichloroethane 103.4 % 60-130 13-AUG-21 1.1,1-Dichloroethane 92.8 % 60-130 13-AUG-21 1.1,1-Dichloroethane 86.2 % 60-130 13-AUG-21 1.1,1-Dichloroethylene 86.2 % 60-130 13-AUG-21 1.2-Dichlorobethylene 86.2 % 70-130 13-AUG-21 1.2-Dichlorobethane 100.7 % 70-130 13-AUG-21 1.2-Dichloroethane 98.2 % 70-130 13-AUG-21 1.2-Dichloroethane 96.7 % 60-130 13-AUG-21 1.2-Dichloroptopane 100.5 % 70-130 13-AUG-21 1.2-Dichloroptopane 100.5 % 70-130 13-AUG-21 1.3-Dichlorobenzene 96.6 % 70-130 13-AUG-21 1.3-Dichlorobenzene 96.6 % 70-130 13-AUG-21 1.3-Dichlorobenzene 99.8 % 70-130 13-AUG-21 1.3-Dichlorobenzene 99.3 % 70-130 13-AUG-21 1.3-Dichlorobenzene 99.3 % 70-130 13-AUG-21 1.3-Dichlorobenzene 99.3 % 70-130 13-AUG-21 1.3-Dichlorobenzene 99.8 % 70-130 13-AUG-21 1.3-Dichlorobenzene 102.6 % 70-130 13-AUG-21 1.3-Dichlorobenzene 70-130 13-AUG-21 1.3-Dichlorobenzene 70-130 13-AUG-21 1.3-Dichloropene 70-130 13-Dichloropene 70-		ine		99.0		%		60-130	13-AUG-21
1.1,2-Trichloroethane 103.4 % 60-130 13-AUG-21 1,1-Dichloroethane 92.8 % 60-130 13-AUG-21 1,1-Dichloroethylene 86.2 % 60-130 13-AUG-21 1,2-Dibromoethane 100.7 % 70-130 13-AUG-21 1,2-Dichloroethane 98.2 % 70-130 13-AUG-21 1,2-Dichloroperpane 100.5 % 60-130 13-AUG-21 1,2-Dichlorobenzene 96.6 % 70-130 13-AUG-21 1,2-Dichlorobenzene 96.6 % 70-130 13-AUG-21 1,3-Dichlorobenzene 95.7 % 70-130 13-AUG-21 1,4-Dichlorobenzene 95.7 % 70-130 13-AUG-21 1,4-Dichlorobenzene 102.6 % 60-140 13-AUG-21 Benzene 99.8 % 70-130 13-AUG-21 Bromodichloromethane 110.1 % 50-140 13-AUG-21 Bromoform 99.3 % 70-130 13-AUG-21 Bromotethane 97.9 % 50-140 13-AUG-21 <td>1,1,2,2-Tetrachloroetha</td> <td>ine</td> <td></td> <td>108.1</td> <td></td> <td>%</td> <td></td> <td>60-130</td> <td>13-AUG-21</td>	1,1,2,2-Tetrachloroetha	ine		108.1		%		60-130	13-AUG-21
1,1-Dichloroethane 92.8 % 60-130 13-AUG-21 1,1-Dichloroethylene 86.2 % 60-130 13-AUG-21 1,2-Dibromoethane 100.7 % 70-130 13-AUG-21 1,2-Dichlorobenzene 98.2 % 70-130 13-AUG-21 1,2-Dichloropthane 96.7 % 60-130 13-AUG-21 1,2-Dichloropthane 100.5 % 70-130 13-AUG-21 1,2-Dichloropenzene 96.6 % 70-130 13-AUG-21 1,3-Dichlorobenzene 95.7 % 70-130 13-AUG-21 1,4-Dichlorobenzene 95.7 % 70-130 13-AUG-21 Acetone 102.6 % 60-140 13-AUG-21 Benzene 99.8 % 70-130 13-AUG-21 Bromodichloromethane 110.1 % 50-140 13-AUG-21 Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21	1,1,1-Trichloroethane			99.1		%		60-130	13-AUG-21
1,1-Dichloroethylene 86.2 % 60-130 13-AUG-21 1,2-Dibromoethane 100.7 % 70-130 13-AUG-21 1,2-Dichloroethane 98.2 % 70-130 13-AUG-21 1,2-Dichloroethane 96.7 % 60-130 13-AUG-21 1,2-Dichloropropane 100.5 % 70-130 13-AUG-21 1,3-Dichlorobenzene 96.6 % 70-130 13-AUG-21 1,4-Dichlorobenzene 95.7 % 70-130 13-AUG-21 Acetone 102.6 % 60-140 13-AUG-21 Benzene 99.8 % 70-130 13-AUG-21 Bromodichloromethane 110.1 % 50-140 13-AUG-21 Bromoform 99.3 % 70-130 13-AUG-21 Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chlorobenzene 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21	1,1,2-Trichloroethane			103.4		%		60-130	13-AUG-21
1,2-Dibromoethane 100.7 % 70-130 13-AuG-21 1,2-Dichlorobenzene 98.2 % 70-130 13-AuG-21 1,2-Dichloroethane 96.7 % 60-130 13-AuG-21 1,2-Dichloropropane 100.5 % 70-130 13-AuG-21 1,3-Dichlorobenzene 96.6 % 70-130 13-AuG-21 1,4-Dichlorobenzene 95.7 % 60-140 13-AuG-21 Acetone 102.6 % 60-140 13-AuG-21 Benzene 99.8 % 70-130 13-AuG-21 Bromodichloromethane 110.1 % 50-140 13-AuG-21 Bromoform 99.3 % 70-130 13-AuG-21 Bromomethane 97.9 % 50-140 13-AuG-21 Carbon tetrachloride 96.6 % 70-130 13-AuG-21 Chlorobenzene 102.6 % 70-130 13-AuG-21 Chloroform 101.5 % 70-130 13-AuG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AuG-21	1,1-Dichloroethane			92.8		%		60-130	13-AUG-21
1,2-Dichlorobenzene 98.2 % 70-130 13-AuG-21 1,2-Dichloroethane 96.7 % 60-130 13-AuG-21 1,2-Dichloropropane 100.5 % 70-130 13-AuG-21 1,3-Dichlorobenzene 96.6 % 70-130 13-AuG-21 1,4-Dichlorobenzene 95.7 % 70-130 13-AuG-21 Acetone 102.6 % 60-140 13-AuG-21 Benzene 99.8 % 70-130 13-AuG-21 Bromodichloromethane 110.1 % 50-140 13-AuG-21 Bromoform 99.3 % 70-130 13-AuG-21 Bromomethane 97.9 % 50-140 13-AuG-21 Carbon tetrachloride 96.6 % 70-130 13-AuG-21 Chloroform 101.5 % 70-130 13-AuG-21 Dibrioforoprop	1,1-Dichloroethylene			86.2		%		60-130	13-AUG-21
1,2-Dichloroethane 96.7 % 60-130 13-AUG-21 1,2-Dichloropropane 100.5 % 70-130 13-AUG-21 1,3-Dichlorobenzene 96.6 % 70-130 13-AUG-21 1,4-Dichlorobenzene 95.7 % 70-130 13-AUG-21 Acetone 102.6 % 60-140 13-AUG-21 Benzene 99.8 % 70-130 13-AUG-21 Bromodichloromethane 110.1 % 50-140 13-AUG-21 Bromoform 99.3 % 70-130 13-AUG-21 Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chlorobenzene 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 Chloroforemthane 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dichlorodifluoromethane 104.2 % 60-130 13-AUG-21	1,2-Dibromoethane			100.7		%		70-130	13-AUG-21
1,2-Dichloropropane 100.5 % 70-130 13-AUG-21 1,3-Dichlorobenzene 96.6 % 70-130 13-AUG-21 1,4-Dichlorobenzene 95.7 % 70-130 13-AUG-21 Acetone 102.6 % 60-140 13-AUG-21 Benzene 99.8 % 70-130 13-AUG-21 Bromodichloromethane 110.1 % 50-140 13-AUG-21 Bromoform 99.3 % 70-130 13-AUG-21 Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chlorobenzene 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 Chloroforbylene 98.7 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 <t< td=""><td>1,2-Dichlorobenzene</td><td></td><td></td><td>98.2</td><td></td><td>%</td><td></td><td>70-130</td><td>13-AUG-21</td></t<>	1,2-Dichlorobenzene			98.2		%		70-130	13-AUG-21
1,3-Dichlorobenzene 96.6 % 70-130 13-AUG-21 1,4-Dichlorobenzene 95.7 % 70-130 13-AUG-21 Acetone 102.6 % 60-140 13-AUG-21 Benzene 99.8 % 70-130 13-AUG-21 Bromodichloromethane 110.1 % 50-140 13-AUG-21 Bromoform 99.3 % 70-130 13-AUG-21 Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chloroform 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,2-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21	1,2-Dichloroethane			96.7		%		60-130	13-AUG-21
1,4-Dichlorobenzene 95.7 % 70-130 13-AUG-21 Acetone 102.6 % 60-140 13-AUG-21 Benzene 99.8 % 70-130 13-AUG-21 Bromodichloromethane 110.1 % 50-140 13-AUG-21 Bromoform 99.3 % 70-130 13-AUG-21 Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chlorobenzene 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 <t< td=""><td>1,2-Dichloropropane</td><td></td><td></td><td>100.5</td><td></td><td>%</td><td></td><td>70-130</td><td>13-AUG-21</td></t<>	1,2-Dichloropropane			100.5		%		70-130	13-AUG-21
Acetone 102.6 % 60-140 13-AUG-21 Benzene 99.8 % 70-130 13-AUG-21 Bromodichloromethane 110.1 % 50-140 13-AUG-21 Bromoform 99.3 % 70-130 13-AUG-21 Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chlorobenzene 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 <t< td=""><td>1,3-Dichlorobenzene</td><td></td><td></td><td>96.6</td><td></td><td>%</td><td></td><td>70-130</td><td>13-AUG-21</td></t<>	1,3-Dichlorobenzene			96.6		%		70-130	13-AUG-21
Benzene 99.8 % 70-130 13-AUG-21 Bromodichloromethane 110.1 % 50-140 13-AUG-21 Bromoform 99.3 % 70-130 13-AUG-21 Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chloroform 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21	1,4-Dichlorobenzene			95.7		%		70-130	13-AUG-21
Bromodichloromethane 110.1 % 50-140 13-AUG-21 Bromoform 99.3 % 70-130 13-AUG-21 Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chlorobenzene 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21	Acetone			102.6		%		60-140	13-AUG-21
Bromoform 99.3 % 70-130 13-AUG-21 Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chlorobenzene 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Benzene			99.8		%		70-130	13-AUG-21
Bromomethane 97.9 % 50-140 13-AUG-21 Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chlorobenzene 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Bromodichloromethane	;		110.1		%		50-140	13-AUG-21
Carbon tetrachloride 96.6 % 70-130 13-AUG-21 Chlorobenzene 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Bromoform			99.3		%		70-130	13-AUG-21
Chlorobenzene 102.6 % 70-130 13-AUG-21 Chloroform 101.5 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Bromomethane			97.9		%		50-140	13-AUG-21
Chloroform 101.5 % 70-130 13-AUG-21 cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Carbon tetrachloride			96.6		%		70-130	13-AUG-21
cis-1,2-Dichloroethylene 98.7 % 70-130 13-AUG-21 cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Chlorobenzene			102.6		%		70-130	13-AUG-21
cis-1,3-Dichloropropene 78.7 % 70-130 13-AUG-21 Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Chloroform			101.5		%		70-130	13-AUG-21
Dibromochloromethane 104.2 % 60-130 13-AUG-21 Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	cis-1,2-Dichloroethylene	е		98.7		%		70-130	13-AUG-21
Dichlorodifluoromethane 55.2 % 50-140 13-AUG-21 Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	cis-1,3-Dichloropropene	Э		78.7		%		70-130	13-AUG-21
Ethylbenzene 101.3 % 70-130 13-AUG-21 n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Dibromochloromethane)		104.2		%		60-130	13-AUG-21
n-Hexane 77.5 % 70-130 13-AUG-21 Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Dichlorodifluoromethan	е		55.2		%		50-140	13-AUG-21
Methylene Chloride 96.3 % 70-130 13-AUG-21 MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Ethylbenzene			101.3		%		70-130	13-AUG-21
MTBE 94.4 % 70-130 13-AUG-21 m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	n-Hexane			77.5		%		70-130	13-AUG-21
m+p-Xylenes 96.5 % 70-130 13-AUG-21 Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	Methylene Chloride			96.3		%		70-130	13-AUG-21
Methyl Ethyl Ketone 102.1 % 60-140 13-AUG-21	MTBE			94.4		%		70-130	13-AUG-21
	m+p-Xylenes			96.5		%		70-130	13-AUG-21
Methyl Isobutyl Ketone 96.6 % 60-140 13-AUG-21	Methyl Ethyl Ketone			102.1		%		60-140	13-AUG-21
	Methyl Isobutyl Ketone			96.6		%		60-140	13-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 18 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R55496	98							
WG3595982-2 LCS	3		00.0		0/			
o-Xylene			99.2		%		70-130	13-AUG-21
Styrene			97.3		%		70-130	13-AUG-21
Tetrachloroethylene			100.8		%		60-130	13-AUG-21
Toluene	vlana		97.5		%		70-130	13-AUG-21
trans-1,2-Dichloroeth	•		90.1		%		60-130	13-AUG-21
trans-1,3-Dichloropro	pene		71.7		%		70-130	13-AUG-21
Trichloroethylene			101.5		%		60-130	13-AUG-21
Trichlorofluorometha	ne		80.3		%		50-140	13-AUG-21
Vinyl chloride			79.0		%		60-140	13-AUG-21
WG3595982-1 MB 1,1,1,2-Tetrachloroet			<0.050		ug/g		0.05	13-AUG-21
1,1,2,2-Tetrachloroet	hane		<0.050		ug/g		0.05	13-AUG-21
1,1,1-Trichloroethane)		<0.050		ug/g		0.05	13-AUG-21
1,1,2-Trichloroethane)		<0.050		ug/g		0.05	13-AUG-21
1,1-Dichloroethane			<0.050		ug/g		0.05	13-AUG-21
1,1-Dichloroethylene			< 0.050		ug/g		0.05	13-AUG-21
1,2-Dibromoethane			< 0.050		ug/g		0.05	13-AUG-21
1,2-Dichlorobenzene			<0.050		ug/g		0.05	13-AUG-21
1,2-Dichloroethane			< 0.050		ug/g		0.05	13-AUG-21
1,2-Dichloropropane			<0.050		ug/g		0.05	13-AUG-21
1,3-Dichlorobenzene			<0.050		ug/g		0.05	13-AUG-21
1,4-Dichlorobenzene			<0.050		ug/g		0.05	13-AUG-21
Acetone			<0.50		ug/g		0.5	13-AUG-21
Benzene			<0.0068		ug/g		0.0068	13-AUG-21
Bromodichlorometha	ne		<0.050		ug/g		0.05	13-AUG-21
Bromoform			<0.050		ug/g		0.05	13-AUG-21
Bromomethane			<0.050		ug/g		0.05	13-AUG-21
Carbon tetrachloride			<0.050		ug/g		0.05	13-AUG-21
Chlorobenzene			< 0.050		ug/g		0.05	13-AUG-21
Chloroform			<0.050		ug/g		0.05	13-AUG-21
cis-1,2-Dichloroethyle	ene		<0.050		ug/g		0.05	13-AUG-21
cis-1,3-Dichloroprope	ene		<0.030		ug/g		0.03	13-AUG-21
Dibromochlorometha	ne		<0.050		ug/g		0.05	13-AUG-21
Dichlorodifluorometha	ane		<0.050		ug/g		0.05	13-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 19 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

est Mat	rix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OC-511-HS-WT Soi	I						
Batch R5549698							
WG3595982-1 MB		0.040		/a		0.040	
Ethylbenzene		<0.018		ug/g		0.018	13-AUG-21
n-Hexane		<0.050		ug/g		0.05	13-AUG-21
Methylene Chloride		<0.050		ug/g		0.05	13-AUG-21
MTBE		<0.050		ug/g		0.05	13-AUG-21
m+p-Xylenes		<0.030		ug/g		0.03	13-AUG-21
Methyl Ethyl Ketone		<0.50		ug/g		0.5	13-AUG-21
Methyl Isobutyl Ketone		<0.50		ug/g		0.5	13-AUG-21
o-Xylene		<0.020		ug/g		0.02	13-AUG-21
Styrene		<0.050		ug/g		0.05	13-AUG-21
Tetrachloroethylene		<0.050		ug/g		0.05	13-AUG-21
Toluene		<0.080		ug/g		0.08	13-AUG-21
trans-1,2-Dichloroethylene		<0.050		ug/g		0.05	13-AUG-21
trans-1,3-Dichloropropene		<0.030		ug/g		0.03	13-AUG-21
Trichloroethylene		<0.010		ug/g		0.01	13-AUG-21
Trichlorofluoromethane		<0.050		ug/g		0.05	13-AUG-21
Vinyl chloride		<0.020		ug/g		0.02	13-AUG-21
Surrogate: 1,4-Difluorobenzer		117.2		%		50-140	13-AUG-21
Surrogate: 4-Bromofluoroben:	zene	120.3		%		50-140	13-AUG-21
WG3595982-5 MS 1,1,1,2-Tetrachloroethane	WG359598	99.3		%		50-140	13-AUG-21
1,1,2,2-Tetrachloroethane		96.8		%		50-140	13-AUG-21
1,1,1-Trichloroethane		106.9		%		50-140	13-AUG-21
1,1,2-Trichloroethane		95.5		%		50-140	13-AUG-21
1,1-Dichloroethane		98.9		%		50-140	13-AUG-21
1,1-Dichloroethylene		103.4		%		50-140	13-AUG-21
1,2-Dibromoethane		93.4		%		50-140	13-AUG-21
1,2-Dichlorobenzene		98.2		%		50-140	13-AUG-21
1,2-Dichloroethane		94.5		%		50-140	13-AUG-21
1,2-Dichloropropane		98.6		%		50-140	13-AUG-21
1,3-Dichlorobenzene		98.2		%		50-140	13-AUG-21
1,4-Dichlorobenzene		97.0		%		50-140	13-AUG-21 13-AUG-21
Acetone		91.6		%		50-140	13-AUG-21 13-AUG-21
Benzene		101.7		%		50-140	
POLIZOLIO		101.7		/0		JU-140	13-AUG-21

Workorder: L2625638 Report Date: 20-AUG-21 Page 20 of 21

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R554969	98							
WG3595982-5 MS		WG3595982						
Bromoform			92.4		%		50-140	13-AUG-21
Bromomethane			105.2		%		50-140	13-AUG-21
Carbon tetrachloride			106.0		%		50-140	13-AUG-21
Chlorobenzene			101.0		%		50-140	13-AUG-21
Chloroform			102.7		%		50-140	13-AUG-21
cis-1,2-Dichloroethyle	ne		102.9		%		50-140	13-AUG-21
cis-1,3-Dichloroprope	ne		96.2		%		50-140	13-AUG-21
Dibromochloromethar	ne		99.8		%		50-140	13-AUG-21
Dichlorodifluorometha	ane		90.9		%		50-140	13-AUG-21
Ethylbenzene			107.4		%		50-140	13-AUG-21
n-Hexane			96.6		%		50-140	13-AUG-21
Methylene Chloride			95.5		%		50-140	13-AUG-21
MTBE			96.8		%		50-140	13-AUG-21
m+p-Xylenes			101.9		%		50-140	13-AUG-21
Methyl Ethyl Ketone			87.8		%		50-140	13-AUG-21
Methyl Isobutyl Keton	е		83.8		%		50-140	13-AUG-21
o-Xylene			104.6		%		50-140	13-AUG-21
Styrene			100.6		%		50-140	13-AUG-21
Tetrachloroethylene			104.6		%		50-140	13-AUG-21
Toluene			101.8		%		50-140	13-AUG-21
trans-1,2-Dichloroethy	/lene		101.3		%		50-140	13-AUG-21
trans-1,3-Dichloropro			96.0		%		50-140	13-AUG-21
Trichloroethylene			103.4		%		50-140	13-AUG-21
Trichlorofluoromethar	ne		105.9		%		50-140	13-AUG-21
Vinyl chloride			91.8		%			13-AUG-21
viriyi cinonue			91.0		70		50-140	13-AUG-ZT

Workorder: L2625638 Report Date: 20-AUG-21

Client: Trafalgar Environmental Consultants (Newmarket) Page 21 of 21

P.O. Box 93316

Newmarket On L3X1A3

Contact: Robb Hudson

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Sample ID: L2625638-1 Client Sample ID: 101 0-5

← -F2-	→←	—F3—→ ← —F4—	>			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067⁰F			
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease			
←	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2625638-2 Client Sample ID: 101 10-15

← -F2-	→ ←	—F3—→ ← —F4—	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasolin	ıe →	← Mot	or Oils/Lube Oils/Grease——			
←	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2625638-3 Client Sample ID: 102 0-5

← -F2-	→←	—F3—→ ← —F4—	>			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067⁰F			
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease			
←	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2625638-4 Client Sample ID: 102 15-20

← -F2-	→←	—F3—→ ← —F4—	>			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067⁰F			
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease			
←	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2625638-5 Client Sample ID: 103 0-5

← -F2-	→←	—F3—→ ← —F4—	>			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067⁰F			
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease			
←	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2625638-6 Client Sample ID: 103 20-25

← -F2-	→ ←	—F3—→ ← F4—	>			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067⁰F			
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease			
•	◆ Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2625638-7 Client Sample ID: 104 0-5

← -F2-	→←	—F3—→ ← —F4—	>			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067⁰F			
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease			
←	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2625638-8 Client Sample ID: 104 15-17.5

← -F2-	→←	—F3—→ ← —F4—	>			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067⁰F			
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease			
←	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2625638-9 Client Sample ID: 210 0-5

← -F2-	→ ←	—F3—→ ← F4—	>				
nC10	nC16	nC34	nC50				
174°C	287°C	481°C	575°C				
346°F	549°F	898°F	1067⁰F				
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease				
←	-Diesel/J	◆ Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2625638-10 Client Sample ID: 210 20-21.5

← -F2-	→ ←	—F3—→ ← —F4—	→			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasolin	ıe →	← Mot	or Oils/Lube Oils/Grease——			
←	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2625638-11 Client Sample ID: 209 0-5

← -F2-	→ ←	—F3—→ ← F4—	>				
nC10	nC16	nC34	nC50				
174°C	287°C	481°C	575°C				
346°F	549°F	898°F	1067⁰F				
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease—						
←	← Diesel/Jet Fuels →						

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

7 79	K .							
	S255							
- Way	70000							
850	8000	Ma.						
1.0	935		•					
Aller .	220	88.7		٠.				
9*	. 8234							
	1003				æ			
- 80003	3577	$cura}$	8.2	28		œ.		
5	200	CAL:	1502	iπ		Ж	٣.	
<u> </u>	1857				57	•		
. 4	86.3				,			
	2000			У.				
8 68	3320		т.					
2 47 2	882	1887	•					
0.07 8	20000	ν.						
St. L	ш»							
100	gr.							
~~								

www.alsglobal.com

	-		
	COC Number:)	
	~		
		,	
		١.	
	*	•	
	~		
	~	-	
	=		
	-		
	\rightarrow		
	O	•	
	ഹ		
	-		
- 1		٦.	
- 4	١.		
- 4	_	3	
	,,,,,,		
		_	
r	v		8
٩.,	∧	ud	
d	10	m,	
Œ.	4	- 3	Ł
34	on the	is	
6	B	**	À.
٦.		. 2	ű.
	MAG	est.	
	こう スペープス・0.7		
8	- 8	~	9.
Α.	3.	-4	9
- 46	- 20	ele	Ś.
*	- 60	- 3	2
-79,	and it	ادونا	b.
	800	ba	
100	Sec.	100	100
-		-7-	

Chain of Custody /CCC

AUG 2020 FI		YELLOW - CLIENT COPY	WHITE - LABORATORY COPY YELLO	DEFER TO RACK PAGE FOR ALS LOCATIONS AND SAFFLING INFORMATION	on T
<u>۽</u> ج	0,00	TITALE IF Received by	Received by:	~	20
06.		FINAL SHIPI	INTERDSHIPMENT RECERTION (ALS use only)	YES TANGET FOR FACE (Alient use)	Т
		7.6		Are samples for human consumption/use :	Arı
S°C	FINAL COOLER TEMPERATURES	MPERATURES °C			CONTROL OF THE PARTY.
□ YES □ IVA	Sample Custody Seals Intact:	Coole⊪Custody Seals Infact: □ YES □ NA Sample Cust	Ta Conk.		As
	□ 8 □ 8	ments identified on Sample		Complete Com	T
TIATED	ZEN 🔲 COOLING INITIATED	Cooling Method: NONE ICE CHICE PACKS FROZEN	Notes / Specify Limits for result evaluation by selecting from urop-down below (Excel COC only)	Drinking Water (DW) Samples' (client use)	1
	use only)	SAMPLE RECEIPT DETAILS (ALS use only)			
			***************************************	709 6.5	
		イフアインフ		612-01	
		301 /22		10000	
		4 2 2 2 2 7	15-80-01		T
		ユフアファ		7 (1.2) (1.2)	
+		~ クワ		100000000000000000000000000000000000000	
		ンファファ		182 20-25	T
		200000		2-4	T
		7		107 15-20	
		7		782 0-5	
		127777 C		1/0/ /0-/5	
			00-00-01	0-5	
		2/1/2	(dG-Hilling-y)) (manner)	(ALS use only) (This description will appear on the report)	⊋
EX	SA	A A	<u> </u>	ALS Sample # Sample Identification and/or Coordinates	2
TEND	MPI	MBE 10 14 10 10 10 10 10 10 10 10 10 10	ALS Contact: HD Sampler: HCH	ALS Lab Work Order # (ALS use only)	Þ
ED	_E(RCCHOUBH	Location	LSD:	LSD
ST	3 C	OF PROS	Requisitioner.	PO/AFE:	PO/
OR/	N		Majorinino Code:	Job#	Job 7
AGE	но	E CO		ALS Account # / Quote #	ALS
RE	LD	4	Oil and Gas Required	Project Information	
COLUMN TO SERVICE		NE	Email 2	on lace	Cont
richtzauster	ETT Design	R Indicate Filtered (F), Preserved (F) of Filtered alid Freserved (FF) below	Email 1 or Fax		Com
	E/D) Kohini	-	Select Invoice Distribution: EMAIL MAIL FAX	Conv of Invoice with Report	
AND DESCRIPTION OF THE PERSONS AND THE PERSONS		Andresis Parison	Invoice Recipients	nvoice To Same as Report To ☐ YES ☐ NO	hvoi
	to confirm availability.	For all thorse with rush TATe requested, ploase contact your AM to confirm availability.	Email 3	Postal Code:	Posta
	Mark patros Admin	Date and Time Required for all E&P TATs.	Email 2	City/Province:	City/F
		Same day [E2] if received by 10am M-S - 200% rush surcharge. Additional rest may apply to rush requests on weekends, statutory holidays and non-routine tests.	Town the partition of the property of the standard of the stan		Street:
		1 day [E] if received by 3pm M-F - 100% rush surcharge minimum	Select Distribution: LL BMAIL MAIL LA PAX	Company address below will appear on the final report	
	(ALS use only)	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum	pro	Phone: 15 1 1010300 016 101961	Phone
EL HERE	AFFIX ALS BARCODE LABEL HERE	4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum 3 day, [p3] if received by 3pm M-F - 25% rush surcharge minimum	Merge-QC/QCI Reports with COA ☐ YES ☐ NO ☐ N/A	Contract	Conta
	las.	Landoutine [R] if received by 3pm M-F - no surcharges apply	Select Repo DIGITAL)	1	Repo
		Turnaround Time (TAT) Requested		Contact and company name below will appear on the final report	
		THE PARTY OF THE P		WWW. Cloud Cochinger	1

WHITE - LABORATORY COPY YELLOW - CLIENT COPY
REPER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION
REPER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION
Failure to complete all portions of this form may delay analysis. See a fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.
Failure to complete all portions of this form may delay analysis. Section pleases within the large and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Trafalgar Environmental Consultants

(Newmarket)

ATTN: Robb Hudson

P.O. Box 93316

Newmarket On L3X1A3

Date Received: 20-AUG-21

Report Date: 27-AUG-21 14:45 (MT)

Version: FINAL

Client Phone: 416-919-4960

Certificate of Analysis

Lab Work Order #: L2629752

Project P.O. #: KD Job Reference: KD

C of C Numbers: Legal Site Desc:

Amanda Overholster Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2629752 CONT'D....

Job Reference: KD

PAGE 2 of 15

27-AUG-21 14:45 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit

Ontario Regulation 153/04 - April 15, 2011 Standards - T2-Soil-Ind/Com/Commu Property Use (Coarse)

(No parameter exceedances)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2629752 CONT'D....

Job Reference: KD

PAGE 3 of 15

27-AUG-21 14:45 (MT)

Physical Tests - SOIL

, o. oa oo. o o o	-		
	Lab I	D L2629752-1	L2629752-2
	Sample Dat	e 20-AUG-21	20-AUG-21
	Sample I	D 208 0'-5'	208 15'-17'
	Guide Limi	ts	
Analyte	Unit #1 #2		
Conductivity	mS/cm 1.4 -	0.173	
% Moisture	%	14.9	20.4
рН	pH units	7.69	

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2629752 CONT'D....

Job Reference: KD

PAGE 4 of 15

27-AUG-21 14:45 (MT)

Cyanides - SOIL

			ah ID	L2629752-1
			ab ID	20-AUG-21
		Sample		
		Sam	ple ID	208 0'-5'
Analyte	Unit	Guide #1	Limits #2	
7 and y to				
Cyanide, Weak Acid Diss	ug/g	0.051	-	< 0.050

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2629752 CONT'D....

Job Reference: KD

PAGE 5 of 15

27-AUG-21 14:45 (MT)

Saturated Paste Extractables - SOIL

		Lab ID Sample Date Sample ID		L2629752-1 20-AUG-21 208 0'-5'
Analyte	Unit	Guide #1	Limits #2	
SAR	SAR	12	-	0.38 SAR:M
Calcium (Ca)	mg/L	-	-	31.7
Magnesium (Mg)	mg/L	-	-	<0.50
Sodium (Na)	mg/L	-	-	7.82

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2629752 CONT'D....

Job Reference: KD

PAGE 6 of 15

27-AUG-21 14:45 (MT)

Metals - SOIL

		Lab ID Sample Date Sample ID		L2629752-1 20-AUG-21 208 0'-5'
Analyte	Unit	Guide #1	Limits #2	
Antimony (Sb)	ug/g	40	-	<1.0
Arsenic (As)	ug/g	18	-	1.7
Barium (Ba)	ug/g	670	-	18.9
Beryllium (Be)	ug/g	8	-	<0.50
Boron (B)	ug/g	120	-	<5.0
Boron (B), Hot Water Ext.	ug/g	2	-	<0.10
Cadmium (Cd)	ug/g	1.9	-	<0.50
Chromium (Cr)	ug/g	160	-	8.5
Cobalt (Co)	ug/g	80	-	2.2
Copper (Cu)	ug/g	230	-	2.9
Lead (Pb)	ug/g	120	-	2.5
Mercury (Hg)	ug/g	3.9	-	0.0143
Molybdenum (Mo)	ug/g	40	-	<1.0
Nickel (Ni)	ug/g	270	-	3.8
Selenium (Se)	ug/g	5.5	-	<1.0
Silver (Ag)	ug/g	40	-	<0.20
Thallium (TI)	ug/g	3.3	-	<0.50
Uranium (U)	ug/g	33	-	<1.0
Vanadium (V)	ug/g	86	-	19.2
Zinc (Zn)	ug/g	340	-	10.1

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2629752 CONT'D....

Job Reference: KD

PAGE 7 of 15

27-AUG-21 14:45 (MT)

Speciated Metals - SOIL

		Sampl	Lab ID le Date nple ID	L2629752-1 20-AUG-21 208 0'-5'
Analyte	Unit	Guide #1	Limits #2	
Chromium, Hexavalent	ug/g	8	-	0.24

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2629752 CONT'D....

Job Reference: KD

PAGE 8 of 15

27-AUG-21 14:45 (MT)

Volatile Organic Compounds - SOIL

		Lab Sample Da Sample		L2629752-1 20-AUG-21 208 0'-5'	L2629752-2 20-AUG-21 208 15'-17'	
Analyte	Unit	Guide #1	Limits #2			
Acetone	ug/g	16	-	<0.50	<0.50	
Benzene	ug/g	0.32	-	<0.0068	<0.0068	
Bromodichloromethane	ug/g	1.5	-	<0.050	<0.050	
Bromoform	ug/g	0.61	-	<0.050	<0.050	
Bromomethane	ug/g	0.05	-	<0.050	<0.050	
Carbon tetrachloride	ug/g	0.21	-	<0.050	<0.050	
Chlorobenzene	ug/g	2.4	-	<0.050	<0.050	
Dibromochloromethane	ug/g	2.3	-	<0.050	<0.050	
Chloroform	ug/g	0.47	-	<0.050	<0.050	
1,2-Dibromoethane	ug/g	0.05	-	<0.050	<0.050	
1,2-Dichlorobenzene	ug/g	1.2	-	<0.050	<0.050	
1,3-Dichlorobenzene	ug/g	9.6	-	<0.050	<0.050	
1,4-Dichlorobenzene	ug/g	0.2	-	<0.050	<0.050	
Dichlorodifluoromethane	ug/g	16	-	<0.050	<0.050	
1,1-Dichloroethane	ug/g	0.47	-	<0.050	<0.050	
1,2-Dichloroethane	ug/g	0.05	-	<0.050	<0.050	
1,1-Dichloroethylene	ug/g	0.064	-	< 0.050	< 0.050	
cis-1,2-Dichloroethylene	ug/g	1.9	-	<0.050	<0.050	
trans-1,2-Dichloroethylene	ug/g	1.3	-	<0.050	<0.050	
Methylene Chloride	ug/g	1.6	-	<0.050	<0.050	
1,2-Dichloropropane	ug/g	0.16	-	<0.050	<0.050	
cis-1,3-Dichloropropene	ug/g	-	-	<0.030	<0.030	
trans-1,3-Dichloropropene	ug/g	-	-	<0.030	<0.030	
1,3-Dichloropropene (cis & trans)	ug/g	0.059	-	<0.042	<0.042	
Ethylbenzene	ug/g	1.1	-	<0.018	<0.018	
n-Hexane	ug/g	46	-	<0.050	<0.050	
Methyl Ethyl Ketone	ug/g	70	-	<0.50	<0.50	
Methyl Isobutyl Ketone	ug/g	31	-	<0.50	<0.50	
MTBE	ug/g	1.6	-	<0.050	<0.050	
Styrene	ug/g	34	-	<0.050	<0.050	

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2629752 CONT'D....

Job Reference: KD

PAGE 9 of 15

27-AUG-21 14:45 (MT)

Volatile Organic Compounds - SOIL

		L	_ab ID	L2629752-1	L2629752-2
		Sample	e Date	20-AUG-21	20-AUG-21
			ple ID	208 0'-5'	208 15'-17'
Analyte	Unit	Guide #1	Limits #2		
1,1,1,2-Tetrachloroethane	ug/g	0.087	-	<0.050	<0.050
1,1,2,2-Tetrachloroethane	ug/g	0.05	-	<0.050	<0.050
Tetrachloroethylene	ug/g	1.9	-	<0.050	<0.050
Toluene	ug/g	6.4	-	<0.080	<0.080
1,1,1-Trichloroethane	ug/g	6.1	-	<0.050	<0.050
1,1,2-Trichloroethane	ug/g	0.05	-	<0.050	<0.050
Trichloroethylene	ug/g	0.55	-	<0.010	<0.010
Trichlorofluoromethane	ug/g	4	-	<0.050	< 0.050
Vinyl chloride	ug/g	0.032	-	<0.020	<0.020
o-Xylene	ug/g	-	-	<0.020	<0.020
m+p-Xylenes	ug/g	-	-	<0.030	< 0.030
Xylenes (Total)	ug/g	26	-	<0.050	<0.050
Surrogate: 4-Bromofluorobenzene	%	-	-	90.8	97.8
Surrogate: 1,4-Difluorobenzene	%	-	-	95.8	103.0

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2629752 CONT'D....
Job Reference: KD
PAGE 10 of 15
27-AUG-21 14:45 (MT)

Hydrocarbons - SOIL

nyurocarbons - SOIL					
		l	_ab ID	L2629752-1	L2629752-2
		Sample	e Date	20-AUG-21	20-AUG-21
		Sam	ple ID	208 0'-5'	208 15'-17'
	Unit	Guide Limits #1 #2			
Analyte	Unit	#1	#2		
F1 (C6-C10)	ug/g	55	-	<5.0	<5.0
F1-BTEX	ug/g	55	-	<5.0	<5.0
F2 (C10-C16)	ug/g	230	-	<10	<10
F2-Naphth	ug/g	-	-	<10	
F3 (C16-C34)	ug/g	1700	-	<50	<50
F3-PAH	ug/g	-	-	<50	
F4 (C34-C50)	ug/g	3300	-	<50	<50
Total Hydrocarbons (C6-C50)	ug/g	-	-	<72	<72
Chrom. to baseline at nC50		-	-	YES	YES
Surrogate: 2-Bromobenzotrifluoride	%	-	-	83.1	85.0
Surrogate: 3,4-Dichlorotoluene	%	-	-	89.9	81.3

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2629752 CONT'D....

Job Reference: KD

PAGE 11 of 15

27-AUG-21 14:45 (MT)

Polycyclic Aromatic Hydrocarbons - SOIL

 Lab ID
 L2629752-1

 Sample Date
 20-AUG-21

 Sample ID
 208 0'-5'

Analyte	Unit	Guide #1	Limits #2	
Acenaphthene	ug/g	21	-	<0.050
Acenaphthylene	ug/g	0.15	-	< 0.050
Anthracene	ug/g	0.67	-	<0.050
Benzo(a)anthracene	ug/g	0.96	-	<0.050
Benzo(a)pyrene	ug/g	0.3	-	<0.050
Benzo(b&j)fluoranthene	ug/g	0.96	-	< 0.050
Benzo(g,h,i)perylene	ug/g	9.6	-	<0.050
Benzo(k)fluoranthene	ug/g	0.96	-	<0.050
Chrysene	ug/g	9.6	-	<0.050
Dibenz(a,h)anthracene	ug/g	0.1	-	<0.050
Fluoranthene	ug/g	9.6	-	<0.050
Fluorene	ug/g	62	-	<0.050
Indeno(1,2,3-cd)pyrene	ug/g	0.76	-	<0.050
1+2-Methylnaphthalenes	ug/g	30	-	<0.042
1-Methylnaphthalene	ug/g	30	-	<0.030
2-Methylnaphthalene	ug/g	30	-	<0.030
Naphthalene	ug/g	9.6	-	<0.013
Phenanthrene	ug/g	12	-	<0.046
Pyrene	ug/g	96	-	<0.050
Surrogate: 2-Fluorobiphenyl	%	-	-	94.4
Surrogate: d14-Terphenyl	%	-	-	101.7

Guide Limit #1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2629752 CONT'D....
Job Reference: KD
PAGE 12 of 15
27-AUG-21 14:45 (MT)

Qualifiers for Individual Parameters Listed:

Qualifier Description

SAR:M Reported SAR represents a maximum value. Actual SAR may be lower if both Ca and Mg were detectable.

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

B-HWS-R511-WT Soil Boron-HWE-O.Reg 153/04 (July 2011) HW EXTR, EPA 6010B

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CN-WAD-R511-WT Soil Cyanide (WAD)-O.Reg 153/04 (July MOE 3015/APHA 4500CN I-WAD 2011)

The sample is extracted with a strong base for 16 hours, and then filtered. The filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CR-CR6-IC-WT Soil Hexavalent Chromium in Soil SW846 3060A/7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-WT Soil Conductivity (EC) MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

1. All extraction and analysis holding times were met.

L2629752 CONT'D....
Job Reference: KD
PAGE 13 of 15
27-AUG-21 14:45 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.

3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Soil

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011)

CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sq is analyzed gravimetrically.

Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sg: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sq are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sq cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-200.2-CVAA-WT

Soil

Mercury in Soil by CVAAS

EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

L2629752 CONT'D....
Job Reference: KD
PAGE 14 of 15
27-AUG-21 14:45 (MT)

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference**
METHYLNAPS-CALC-WT	Soil	ABN-Calculated Parameters	SW846 8270
MOISTURE-WT	Soil	% Moisture	CCME PHC in Soil - Tier 1 (mod)
PAH-511-WT	Soil	PAH-O.Reg 153/04 (July 2011)	SW846 3510/8270

A representative sub-sample of soil is fortified with deuterium-labelled surrogates and a mechanical shaking technique used to extract the sample with a mixture of methanol and toluene. The extracts are concentrated and analyzed by GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT Soil pH MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

SAR-R511-WT Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

 VOC-1,3-DCP-CALC-WT
 Soil
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-511-HS-WT
 Soil
 VOC-O.Reg 153/04 (July 2011)
 SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Soil Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorpo	**ALS test methods may incorporate modifications from specified reference methods to improve performance.								
Chain of Custody Numbers:	Chain of Custody Numbers:								
The last two letters of the above	ve test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:								
Laboratory Definition Code	Laboratory Definition Code Laboratory Location								
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA								

L2629752 CONT'D.... Job Reference: KD PAGE 15 of 15 27-AUG-21 14:45 (MT)

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2629752 Report Date: 27-AUG-21 Page 1 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HWS-R511-WT	Soil							
Batch R5569535 WG3603961-4 DUP Boron (B), Hot Water Ex	ct.	L2630447-12 0.33	0.33		ug/g	0.2	30	25-AUG-21
WG3603961-2 IRM Boron (B), Hot Water Ex	ĸt.	WT SAR4	88.6		%		70-130	25-AUG-21
WG3603961-3 LCS Boron (B), Hot Water Ex	ct.		96.4		%		70-130	25-AUG-21
WG3603961-1 MB Boron (B), Hot Water Ex	ct.		<0.10		ug/g		0.1	25-AUG-21
CN-WAD-R511-WT	Soil							
Batch R5569985								
WG3602219-3 DUP Cyanide, Weak Acid Dis	ss	L2629868-7 <0.050	<0.050	RPD-NA	ug/g	N/A	35	25-AUG-21
WG3602219-2 LCS Cyanide, Weak Acid Dis	ss		96.5		%		80-120	25-AUG-21
WG3602219-1 MB Cyanide, Weak Acid Dis	ss		<0.050		ug/g		0.05	25-AUG-21
WG3602219-4 MS Cyanide, Weak Acid Dis	ss	L2629868-7	108.4		%		70-130	25-AUG-21
CR-CR6-IC-WT	Soil							
Batch R5570031								
WG3601025-4 CRM Chromium, Hexavalent		WT-SQC012	93.1		%		70-130	25-AUG-21
WG3601025-3 DUP Chromium, Hexavalent		L2629868-7 <0.20	<0.20	RPD-NA	ug/g	N/A	35	25-AUG-21
WG3601025-2 LCS Chromium, Hexavalent			92.0		%		80-120	25-AUG-21
WG3601025-1 MB Chromium, Hexavalent			<0.20		ug/g		0.2	25-AUG-21
EC-WT	Soil							
Batch R5569256								
WG3603966-4 DUP Conductivity		WG3603966-3 1.61	1.37		mS/cm	16	20	25-AUG-21
WG3603966-2 IRM Conductivity		WT SAR4	104.4		%		70-130	25-AUG-21
WG3604096-1 LCS Conductivity			98.0		%		90-110	25-AUG-21
WG3603966-1 MB								

Workorder: L2629752 Report Date: 27-AUG-21 Page 2 of 14

Trafalgar Environmental Consultants (Newmarket) Client:

P.O. Box 93316

Newmarket On L3X1A3

Contact: Robb Hudson

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-WT		Soil							
Batch R5 WG3603966-1 Conductivity	5569256 MB			<0.0040		mS/cm		0.004	25-AUG-21
F1-HS-511-WT		Soil							
Batch R5	569844								
WG3603678-4 F1 (C6-C10)	DUP		WG3603678-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	25-AUG-21
WG3603678-2 F1 (C6-C10)	LCS			102.7		%		80-120	25-AUG-21
WG3603678-1 F1 (C6-C10)	MB			<5.0		ug/g		5	25-AUG-21
Surrogate: 3,4-I	Dichloroto	oluene		96.9		%		60-140	25-AUG-21
WG3603678-5 F1 (C6-C10)	MS		WG3603678-3	96.1		%		60-140	25-AUG-21
F2-F4-511-WT		Soil							
Batch R5	569679								
WG3602992-7	DUP		WG3602992-9	40	555				
F2 (C10-C16) F3 (C16-C34)			<10 <50	<10 <50	RPD-NA	ug/g	N/A	30	25-AUG-21
F4 (C34-C50)			<50 <50	<50 <50	RPD-NA	ug/g	N/A	30 30	25-AUG-21
WG3602992-6	LCS		430	<30	RPD-NA	ug/g	N/A	30	25-AUG-21
F2 (C10-C16)	LOS			96.4		%		80-120	25-AUG-21
F3 (C16-C34)				87.5		%		80-120	25-AUG-21
F4 (C34-C50)				73.6	LCS-L	%		80-120	25-AUG-21
WG3602992-5	MB					,			
F2 (C10-C16)				<10		ug/g		10	25-AUG-21
F3 (C16-C34)				<50 <50		ug/g		50 50	25-AUG-21
F4 (C34-C50) Surrogate: 2-Br	omohenz	otrifluorida		71.3		ug/g %		60-140	25-AUG-21
WG3602992-8	MS	.o.i.iiuonu c	WG3602992-9	71.5		70		00-140	25-AUG-21
F2 (C10-C16)	IVIO		11 0 3 0 0 2 3 3 2 - 3	74.8		%		60-140	25-AUG-21
F3 (C16-C34)				74.2		%		60-140	25-AUG-21
F4 (C34-C50)				74.1		%		60-140	25-AUG-21
HG-200.2-CVAA-W	т	Soil							

Workorder: L2629752 Report Date: 27-AUG-21 Page 3 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-200.2-CVAA-W	т	Soil							
Batch R5	568836								
WG3603921-2	CRM		WT-SS-2			0.4			
Mercury (Hg)				100.7		%		70-130	25-AUG-21
WG3603921-6 Mercury (Hg)	DUP		WG3603921-5 <0.0050	<0.0050	RPD-NA	ug/g	N/A	40	25-AUG-21
WG3603921-3 Mercury (Hg)	LCS			97.5		%		80-120	25-AUG-21
WG3603921-1 Mercury (Hg)	МВ			<0.0050		mg/kg		0.005	25-AUG-21
MET-200.2-CCMS-	WT	Soil							
Batch R5	569627								
WG3603921-2	CRM		WT-SS-2						
Antimony (Sb)				107.0		%		70-130	25-AUG-21
Arsenic (As)				115.5		%		70-130	25-AUG-21
Barium (Ba)				113.1		%		70-130	25-AUG-21
Beryllium (Be)				108.9		%		70-130	25-AUG-21
Boron (B)				9.7		mg/kg		3.5-13.5	25-AUG-21
Cadmium (Cd)				105.3		%		70-130	25-AUG-21
Chromium (Cr)				107.9		%		70-130	25-AUG-21
Cobalt (Co)				109.4		%		70-130	25-AUG-21
Copper (Cu)				103.5		%		70-130	25-AUG-21
Lead (Pb)				107.8		%		70-130	25-AUG-21
Molybdenum (M	1 o)			109.1		%		70-130	25-AUG-21
Nickel (Ni)				107.9		%		70-130	25-AUG-21
Selenium (Se)				0.14		mg/kg		0-0.34	25-AUG-21
Silver (Ag)				102.7		%		70-130	25-AUG-21
Thallium (TI)				0.085		mg/kg		0.029-0.129	25-AUG-21
Uranium (U)				112.9		%		70-130	25-AUG-21
Vanadium (V)				111.2		%		70-130	25-AUG-21
Zinc (Zn)				99.7		%		70-130	25-AUG-21
WG3603921-6 Antimony (Sb)	DUP		WG3603921-5 <0.10	<0.10	RPD-NA	ug/g	N/A	30	25-AUG-21
Arsenic (As)			1.50	1.42		ug/g	5.3	30	25-AUG-21
Barium (Ba)			28.0	29.4		ug/g	4.9	40	25-AUG-21
Beryllium (Be)			0.15	0.15		ug/g	0.3	30	25-AUG-21
Boron (B)			<5.0	<5.0	RPD-NA	ug/g	N/A	30	25-AUG-21
D01011 (D)			٦٥.0	~0.0	IVE D-INW	~9 [,] 9	11/71	30	20-AUG-21

Workorder: L2629752 Report Date: 27-AUG-21 Page 4 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ET-200.2-CCMS-WT	Soil							
Batch R5569627	7							
WG3603921-6 DUP Cadmium (Cd)		WG3603921 -0.027	- 5 0.038		ua/a	0.044	0.04	05 4110 04
Chromium (Cr)				J	ug/g	0.011	0.04	25-AUG-21
		7.82	6.80		ug/g	14	30	25-AUG-21
Cobalt (Co)		2.49	2.42		ug/g	2.7	30	25-AUG-21
Copper (Cu)		5.76	5.80		ug/g	0.7	30	25-AUG-21
Lead (Pb)		2.54	2.82		ug/g	10	40	25-AUG-21
Molybdenum (Mo)		0.20	0.20		ug/g	3.6	40	25-AUG-21
Nickel (Ni)		4.16	4.04		ug/g	2.8	30	25-AUG-21
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	25-AUG-21
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	25-AUG-21
Thallium (TI)		<0.050	< 0.050	RPD-NA	ug/g	N/A	30	25-AUG-21
Uranium (U)		0.471	0.450		ug/g	4.6	30	25-AUG-21
Vanadium (V)		17.2	16.2		ug/g	6.2	30	25-AUG-21
Zinc (Zn)		20.6	24.7		ug/g	18	30	25-AUG-21
WG3603921-4 LCS								
Antimony (Sb)			105.7		%		80-120	25-AUG-21
Arsenic (As)			109.0		%		80-120	25-AUG-21
Barium (Ba)			112.2		%		80-120	25-AUG-21
Beryllium (Be)			100.1		%		80-120	25-AUG-21
Boron (B)			93.9		%		80-120	25-AUG-21
Cadmium (Cd)			101.9		%		80-120	25-AUG-21
Chromium (Cr)			105.4		%		80-120	25-AUG-21
Cobalt (Co)			104.2		%		80-120	25-AUG-21
Copper (Cu)			101.8		%		80-120	25-AUG-21
Lead (Pb)			103.7		%		80-120	25-AUG-21
Molybdenum (Mo)			105.1		%		80-120	25-AUG-21
Nickel (Ni)			102.1		%		80-120	25-AUG-21
Selenium (Se)			100.1		%		80-120	25-AUG-21
Silver (Ag)			110.3		%		80-120	25-AUG-21
Thallium (TI)			105.3		%		80-120	25-AUG-21
Uranium (U)			107.6		%		80-120	25-AUG-21
Vanadium (V)			108.6		%		80-120	25-AUG-21
Zinc (Zn)			99.7		%		80-120	25-AUG-21

Workorder: L2629752 Report Date: 27-AUG-21 Page 5 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5569627	•							
WG3603921-1 MB			-0.10		ma/ka		0.1	05 4110 04
Antimony (Sb) Arsenic (As)			<0.10 <0.10		mg/kg		0.1	25-AUG-21
					mg/kg			25-AUG-21
Barium (Ba)			<0.50		mg/kg		0.5	25-AUG-21
Beryllium (Be)			<0.10		mg/kg		0.1	25-AUG-21
Boron (B)			<5.0		mg/kg		5	25-AUG-21
Cadmium (Cd)			<0.020		mg/kg		0.02	25-AUG-21
Chromium (Cr)			<0.50		mg/kg		0.5	25-AUG-21
Cobalt (Co)			<0.10		mg/kg		0.1	25-AUG-21
Copper (Cu)			<0.50		mg/kg		0.5	25-AUG-21
Lead (Pb)			<0.50		mg/kg		0.5	25-AUG-21
Molybdenum (Mo)			<0.10		mg/kg		0.1	25-AUG-21
Nickel (Ni)			<0.50		mg/kg		0.5	25-AUG-21
Selenium (Se)			<0.20		mg/kg		0.2	25-AUG-21
Silver (Ag)			<0.10		mg/kg		0.1	25-AUG-21
Thallium (TI)			< 0.050		mg/kg		0.05	25-AUG-21
Uranium (U)			<0.050		mg/kg		0.05	25-AUG-21
Vanadium (V)			<0.20		mg/kg		0.2	25-AUG-21
Zinc (Zn)			<2.0		mg/kg		2	25-AUG-21
MOISTURE-WT	Soil							
Batch R5565180)							
WG3602198-3 DUP % Moisture		L2628596-2 71.8	68.3		%	4.9	20	24-AUG-21
WG3602198-2 LCS								217.00 21
% Moisture			100.4		%		90-110	24-AUG-21
WG3602198-1 MB								
% Moisture			<0.25		%		0.25	24-AUG-21
PAH-511-WT	Soil							
Batch R5569080)							
WG3602305-3 DUP 1-Methylnaphthalene		WG3602305 -<0.030	5 <0.030	RPD-NA	ug/g	N/A	40	25-AUG-21
2-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	25-AUG-21
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
							-	· · · ·

Workorder: L2629752 Report Date: 27-AUG-21 Page 6 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5569080 WG3602305-3 DUP Benzo(a)anthracene		WG3602305-5 <0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Benzo(a)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21 25-AUG-21
Benzo(b&j)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21 25-AUG-21
Benzo(g,h,i)perylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Benzo(k)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Chrysene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21 25-AUG-21
Dibenz(a,h)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21 25-AUG-21
Fluorene		<0.050	<0.050	RPD-NA	ug/g ug/g	N/A	40	25-AUG-21 25-AUG-21
Indeno(1,2,3-cd)pyrene		<0.050	<0.050	RPD-NA	ug/g ug/g	N/A	40	25-AUG-21 25-AUG-21
Naphthalene		<0.030	<0.013	RPD-NA	ug/g ug/g	N/A	40	25-AUG-21 25-AUG-21
Phenanthrene		<0.015	<0.046	RPD-NA	ug/g ug/g	N/A	40	25-AUG-21 25-AUG-21
Pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21 25-AUG-21
WG3602305-2 LCS 1-Methylnaphthalene		10.000	100.1	NI D-NA	%	IV/A	50-140	25-AUG-21
2-Methylnaphthalene			97.3		%		50-140	25-AUG-21
Acenaphthene			96.5		%		50-140	25-AUG-21
Acenaphthylene			94.1		%		50-140	25-AUG-21
Anthracene			85.7		%		50-140	25-AUG-21
Benzo(a)anthracene			99.4		%		50-140	25-AUG-21
Benzo(a)pyrene			83.0		%		50-140	25-AUG-21
Benzo(b&j)fluoranthene			87.3		%		50-140	25-AUG-21
Benzo(g,h,i)perylene			82.3		%		50-140	25-AUG-21
Benzo(k)fluoranthene			95.6		%		50-140	25-AUG-21
Chrysene			101.6		%		50-140	25-AUG-21
Dibenz(a,h)anthracene			90.6		%		50-140	25-AUG-21
Fluoranthene			98.8		%		50-140	25-AUG-21
Fluorene			96.0		%		50-140	25-AUG-21
Indeno(1,2,3-cd)pyrene			92.7		%		50-140	25-AUG-21
Naphthalene			93.9		%		50-140	25-AUG-21
Phenanthrene			96.6		%		50-140	25-AUG-21
Pyrene			98.0		%		50-140	25-AUG-21

Workorder: L2629752 Report Date: 27-AUG-21 Page 7 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

PAH-S11-WT Soil	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Batch R559080 WG3602305-1 MB 1Methynaphthalene <0.030 ug/g 0.03 25-AUG-21 2-Methyfnaphthalene <0.030 ug/g 0.05 25-AUG-21 Acenaphthene <0.050 ug/g 0.05 25-AUG-21 Acenaphthylene <0.050 ug/g 0.05 25-AUG-21 Acenaphthylene <0.050 ug/g 0.05 25-AUG-21 Anntracene <0.050 ug/g 0.05 25-AUG-21 Benzo(a)pyrene <0.050 ug/g 0.05 25-AUG-21 Benzo(k)fluoranthene <0.050 ug/g 0.05 25-AUG-21 Dibenz(k)hanthracene <0.050 ug/g 0.05 25-AUG-21	PAH-511-WT	Soil							
1-Methylnaphthalene	Batch R5569080								
2-Methylnaphthalene <0.030									
Acenaphthene <0.050									
Acenaphthylene <0.050									
Anthracene									
Benzo(a)anthracene <0.050						ug/g			25-AUG-21
Benzo(a)pyrene <0.050									25-AUG-21
Benzo(b&)filuoranthene	` ,			<0.050		ug/g			25-AUG-21
Benzo(g,h,i)perylene <0.050	Benzo(a)pyrene			<0.050		ug/g		0.05	25-AUG-21
Benzo(k)fluoranthene <0.050	Benzo(b&j)fluoranthene			<0.050		ug/g		0.05	25-AUG-21
Chrysene <0.050 ug/g 0.05 25-AUG-21 Dibenz(a,h)anthracene <0.050				<0.050		ug/g		0.05	25-AUG-21
Dibenz(a,h)anthracene	Benzo(k)fluoranthene			<0.050		ug/g		0.05	25-AUG-21
Fluoranthene	Chrysene			< 0.050		ug/g		0.05	25-AUG-21
Fluorene	Dibenz(a,h)anthracene			< 0.050		ug/g		0.05	25-AUG-21
Indeno(1,2,3-cd)pyrene	Fluoranthene			< 0.050		ug/g		0.05	25-AUG-21
Naphthalene <0.013	Fluorene			< 0.050		ug/g		0.05	25-AUG-21
Phenanthrene	Indeno(1,2,3-cd)pyrene			< 0.050		ug/g		0.05	25-AUG-21
Pyrene <0.050 ug/g 0.05 25-AUG-21	Naphthalene			<0.013		ug/g		0.013	25-AUG-21
Surrogate: 2-Fluorobiphenyl 90.8 % 50-140 25-AUG-21 Surrogate: d14-Terphenyl 92.5 % 50-140 25-AUG-21 WG3602305-4 MS WG3602305-5 WG3602305-5 Solution Solution 25-AUG-21 1-Methylnaphthalene 96.5 % 50-140 25-AUG-21 2-Methylnaphthalene 93.9 % 50-140 25-AUG-21 Acenaphthylene 90.9 % 50-140 25-AUG-21 Acenaphthylene 90.9 % 50-140 25-AUG-21 Anthracene 81.3 % 50-140 25-AUG-21 Benzo(a)anthracene 96.6 % 50-140 25-AUG-21 Benzo(a)pyrene 80.0 % 50-140 25-AUG-21 Benzo(bij)fluoranthene 85.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Phenanthrene			<0.046		ug/g		0.046	25-AUG-21
Surrogate: d14-Terphenyl 92.5 % 50-140 25-AUG-21 WG3602305-4 MS WG3602305-5 S So-140 25-AUG-21 1-Methylnaphthalene 96.5 % 50-140 25-AUG-21 2-Methylnaphthalene 93.9 % 50-140 25-AUG-21 Acenaphthylene 92.1 % 50-140 25-AUG-21 Acenaphthylene 90.9 % 50-140 25-AUG-21 Anthracene 81.3 % 50-140 25-AUG-21 Benzo(a)anthracene 96.6 % 50-140 25-AUG-21 Benzo(a)pyrene 80.0 % 50-140 25-AUG-21 Benzo(b&j)fluoranthene 85.0 % 50-140 25-AUG-21 Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Pyrene			<0.050		ug/g		0.05	25-AUG-21
WG3602305-4 MS WG3602305-5 1-Methylnaphthalene 96.5 % 50-140 25-AUG-21 2-Methylnaphthalene 93.9 % 50-140 25-AUG-21 Acenaphthene 92.1 % 50-140 25-AUG-21 Acenaphthylene 90.9 % 50-140 25-AUG-21 Anthracene 81.3 % 50-140 25-AUG-21 Benzo(a)anthracene 96.6 % 50-140 25-AUG-21 Benzo(a)pyrene 80.0 % 50-140 25-AUG-21 Benzo(b&j)fluoranthene 85.0 % 50-140 25-AUG-21 Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Surrogate: 2-Fluorobiph	enyl		90.8		%		50-140	25-AUG-21
1-Methylnaphthalene 96.5 % 50-140 25-AUG-21 2-Methylnaphthalene 93.9 % 50-140 25-AUG-21 Acenaphthene 92.1 % 50-140 25-AUG-21 Acenaphthylene 90.9 % 50-140 25-AUG-21 Anthracene 81.3 % 50-140 25-AUG-21 Benzo(a)anthracene 96.6 % 50-140 25-AUG-21 Benzo(a)pyrene 80.0 % 50-140 25-AUG-21 Benzo(b&j)fluoranthene 85.0 % 50-140 25-AUG-21 Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Surrogate: d14-Terphen	ıyl		92.5		%		50-140	25-AUG-21
2-Methylnaphthalene 93.9 % 50-140 25-AUG-21 Acenaphthene 92.1 % 50-140 25-AUG-21 Acenaphthylene 90.9 % 50-140 25-AUG-21 Anthracene 81.3 % 50-140 25-AUG-21 Benzo(a)anthracene 96.6 % 50-140 25-AUG-21 Benzo(a)pyrene 80.0 % 50-140 25-AUG-21 Benzo(b&j)fluoranthene 85.0 % 50-140 25-AUG-21 Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21			WG3602305-5						
Acenaphthene 92.1 % 50-140 25-AUG-21 Acenaphthylene 90.9 % 50-140 25-AUG-21 Anthracene 81.3 % 50-140 25-AUG-21 Benzo(a)anthracene 96.6 % 50-140 25-AUG-21 Benzo(a)pyrene 80.0 % 50-140 25-AUG-21 Benzo(b&jfluoranthene 85.0 % 50-140 25-AUG-21 Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	1-Methylnaphthalene							50-140	25-AUG-21
Acenaphthylene 90.9 % 50-140 25-AUG-21 Anthracene 81.3 % 50-140 25-AUG-21 Benzo(a)anthracene 96.6 % 50-140 25-AUG-21 Benzo(a)pyrene 80.0 % 50-140 25-AUG-21 Benzo(b&j)fluoranthene 85.0 % 50-140 25-AUG-21 Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	2-Methylnaphthalene			93.9		%		50-140	25-AUG-21
Anthracene 81.3 % 50-140 25-AUG-21 Benzo(a)anthracene 96.6 % 50-140 25-AUG-21 Benzo(a)pyrene 80.0 % 50-140 25-AUG-21 Benzo(b&j)fluoranthene 85.0 % 50-140 25-AUG-21 Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Acenaphthene			92.1		%		50-140	25-AUG-21
Benzo(a)anthracene 96.6 % 50-140 25-AUG-21 Benzo(a)pyrene 80.0 % 50-140 25-AUG-21 Benzo(b&j)fluoranthene 85.0 % 50-140 25-AUG-21 Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Acenaphthylene			90.9		%		50-140	25-AUG-21
Benzo(a)pyrene 80.0 % 50-140 25-AUG-21 Benzo(b&j)fluoranthene 85.0 % 50-140 25-AUG-21 Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Anthracene			81.3		%		50-140	25-AUG-21
Benzo(b&j)fluoranthene 85.0 % 50-140 25-AUG-21 Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Benzo(a)anthracene			96.6		%		50-140	25-AUG-21
Benzo(g,h,i)perylene 80.0 % 50-140 25-AUG-21 Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Benzo(a)pyrene			80.0		%		50-140	25-AUG-21
Benzo(k)fluoranthene 91.4 % 50-140 25-AUG-21 Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Benzo(b&j)fluoranthene			85.0		%		50-140	25-AUG-21
Chrysene 98.4 % 50-140 25-AUG-21 Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Benzo(g,h,i)perylene			80.0		%		50-140	25-AUG-21
Dibenz(a,h)anthracene 87.6 % 50-140 25-AUG-21	Benzo(k)fluoranthene			91.4		%		50-140	25-AUG-21
	Chrysene			98.4		%		50-140	25-AUG-21
Fluoranthene 94.1 % 50-140 25-AUG-21	Dibenz(a,h)anthracene			87.6		%		50-140	25-AUG-21
	Fluoranthene			94.1		%		50-140	25-AUG-21

Workorder: L2629752 Report Date: 27-AUG-21 Page 8 of 14

Trafalgar Environmental Consultants (Newmarket) Client:

P.O. Box 93316

Newmarket On L3X1A3

Contact: Robb Hudson

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5569080 WG3602305-4 MS Fluorene		WG3602305-5	91.2		%		50-140	25-AUG-21
Indeno(1,2,3-cd)pyrene			89.5		%		50-140	25-AUG-21
Naphthalene			90.3		%		50-140	25-AUG-21
Phenanthrene			92.2		%		50-140	25-AUG-21
Pyrene			93.6		%		50-140	25-AUG-21
PH-WT	Soil							257.00 2.
Batch R5565077								
WG3602204-1 DUP pH		L2629705-10 8.16	8.22	J	pH units	0.06	0.3	23-AUG-21
WG3602613-1 LCS pH			7.00		pH units		6.9-7.1	23-AUG-21
SAR-R511-WT	Soil							
Batch R5569614								
WG3603966-4 DUP Calcium (Ca)		WG3603966-3 1.76	1.44		mg/L	20	20	05 4110 04
Sodium (Na)		300	257		mg/L	20	30	25-AUG-21
Magnesium (Mg)		<0.50	< 0.50	DDD NA	mg/L	15	30	25-AUG-21
			<0.50	RPD-NA	ilig/L	N/A	30	25-AUG-21
WG3603966-2 IRM Calcium (Ca)		WT SAR4	103.7		%		70-130	25-AUG-21
Sodium (Na)			97.0		%		70-130	25-AUG-21
Magnesium (Mg)			106.0		%		70-130	25-AUG-21
WG3603966-5 LCS Calcium (Ca)			106.3		%		80-120	25-AUG-21
Sodium (Na)			105.6		%		80-120	25-AUG-21
Magnesium (Mg)			104.4		%		80-120	25-AUG-21
WG3603966-1 MB Calcium (Ca)			<0.50		mg/L		0.5	25-AUG-21
Sodium (Na)			<0.50		mg/L		0.5	25-AUG-21
Magnesium (Mg)			<0.50		mg/L		0.5	25-AUG-21
VOC-511-HS-WT	Soil							
Batch R5569844								
WG3603678-4 DUP 1,1,1,2-Tetrachloroetha	ne	WG3603678-3 < 0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
1,1,2,2-Tetrachloroetha	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
1,1,1-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21

Workorder: L2629752 Report Date: 27-AUG-21 Page 9 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5569844								
WG3603678-4 DUP		WG3603678-		555				
1,1,2-Trichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
1,1-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
1,1-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
1,2-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
1,2-Dichloropropane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	25-AUG-21
Benzene		<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	25-AUG-21
Bromodichloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Carbon tetrachloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Chlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
cis-1,2-Dichloroethylene	9	<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
cis-1,3-Dichloropropene)	<0.030	<0.030	RPD-NA	ug/g	N/A	40	25-AUG-21
Dibromochloromethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Dichlorodifluoromethan	е	<0.050	< 0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	25-AUG-21
n-Hexane		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Methylene Chloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
MTBE		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	25-AUG-21
Methyl Ethyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	25-AUG-21
Methyl Isobutyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	25-AUG-21
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	25-AUG-21
Styrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Tetrachloroethylene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	25-AUG-21
trans-1,2-Dichloroethyle	ene	<0.050	<0.050		ug/g			25-AUG-21

Workorder: L2629752 Report Date: 27-AUG-21 Page 10 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5569844	ļ							
WG3603678-4 DUP	•	WG3603678-		000 114		. 1/0	40	
trans-1,2-Dichloroethyl		<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
trans-1,3-Dichloroprope	ene	<0.030	<0.030	RPD-NA	ug/g	N/A	40	25-AUG-21
Trichloroethylene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	25-AUG-21
Trichlorofluoromethane)	<0.050	<0.050	RPD-NA	ug/g	N/A	40	25-AUG-21
Vinyl chloride		<0.020	<0.020	RPD-NA	ug/g	N/A	40	25-AUG-21
WG3603678-2 LCS 1,1,1,2-Tetrachloroetha	ane		91.5		%		60-130	25-AUG-21
1,1,2,2-Tetrachloroetha	ane		84.1		%		60-130	25-AUG-21
1,1,1-Trichloroethane			93.0		%		60-130	25-AUG-21
1,1,2-Trichloroethane			85.5		%		60-130	25-AUG-21
1,1-Dichloroethane			91.8		%		60-130	25-AUG-21
1,1-Dichloroethylene			90.2		%		60-130	25-AUG-21
1,2-Dibromoethane			83.5		%		70-130	25-AUG-21
1,2-Dichlorobenzene			95.4		%		70-130	25-AUG-21
1,2-Dichloroethane			91.3		%		60-130	25-AUG-21
1,2-Dichloropropane			93.7		%		70-130	25-AUG-21
1,3-Dichlorobenzene			96.5		%		70-130	25-AUG-21
1,4-Dichlorobenzene			96.6		%		70-130	25-AUG-21
Acetone			80.4		%		60-140	25-AUG-21
Benzene			90.5		%		70-130	25-AUG-21
Bromodichloromethane	9		97.4		%		50-140	25-AUG-21
Bromoform			85.2		%		70-130	25-AUG-21
Bromomethane			86.2		%		50-140	25-AUG-21
Carbon tetrachloride			94.0		%		70-130	25-AUG-21
Chlorobenzene			95.1		%		70-130	25-AUG-21
Chloroform			90.0		%		70-130	25-AUG-21
cis-1,2-Dichloroethylen	е		90.4		%		70-130	25-AUG-21
cis-1,3-Dichloropropen			87.7		%		70-130	25-AUG-21
Dibromochloromethane			87.5		%		60-130	25-AUG-21
Dichlorodifluoromethan	ne		65.2		%		50-140	25-AUG-21
Ethylbenzene			96.1		%		70-130	25-AUG-21
n-Hexane			89.1		%		70-130	25-AUG-21
Methylene Chloride			84.5		%		70-130	25-AUG-21

Workorder: L2629752 Report Date: 27-AUG-21 Page 11 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5569844								
WG3603678-2 LCS			00.0		0/			
MTBE			93.3		%		70-130	25-AUG-21
m+p-Xylenes			96.7		%		70-130	25-AUG-21
Methyl Ethyl Ketone			81.8		%		60-140	25-AUG-21
Methyl Isobutyl Ketone			81.4		%		60-140	25-AUG-21
o-Xylene			95.8		%		70-130	25-AUG-21
Styrene			95.5		%		70-130	25-AUG-21
Tetrachloroethylene			97.6		%		60-130	25-AUG-21
Toluene			93.2		%		70-130	25-AUG-21
trans-1,2-Dichloroethyle			92.9		%		60-130	25-AUG-21
trans-1,3-Dichloroprope	ene		84.8		%		70-130	25-AUG-21
Trichloroethylene			99.0		%		60-130	25-AUG-21
Trichlorofluoromethane	!		90.1		%		50-140	25-AUG-21
Vinyl chloride			77.9		%		60-140	25-AUG-21
WG3603678-1 MB 1,1,1,2-Tetrachloroetha	ine		<0.050		ug/g		0.05	25-AUG-21
1,1,2,2-Tetrachloroetha			<0.050		ug/g		0.05	25-AUG-21 25-AUG-21
1,1,1-Trichloroethane	u i C		<0.050		ug/g ug/g		0.05	25-AUG-21 25-AUG-21
1,1,2-Trichloroethane			<0.050		ug/g ug/g		0.05	25-AUG-21 25-AUG-21
1,1-Dichloroethane			<0.050		ug/g ug/g		0.05	25-AUG-21 25-AUG-21
1,1-Dichloroethylene			<0.050		ug/g ug/g		0.05	25-AUG-21 25-AUG-21
1,2-Dibromoethane			<0.050		ug/g		0.05	25-AUG-21 25-AUG-21
1,2-Dichlorobenzene			<0.050		ug/g		0.05	25-AUG-21 25-AUG-21
1,2-Dichloroethane			<0.050		ug/g ug/g		0.05	25-AUG-21 25-AUG-21
1,2-Dichloropropane			<0.050				0.05	
1,3-Dichlorobenzene			<0.050		ug/g ug/g		0.05	25-AUG-21 25-AUG-21
1,4-Dichlorobenzene			<0.050		ug/g		0.05	25-AUG-21 25-AUG-21
Acetone			<0.50		ug/g		0.5	25-AUG-21 25-AUG-21
Benzene			<0.0068				0.0068	
Bromodichloromethane	1		<0.050		ug/g		0.000	25-AUG-21 25-AUG-21
Bromoform	•		<0.050		ug/g		0.05	
Bromomethane			<0.050		ug/g		0.05	25-AUG-21
Carbon tetrachloride			<0.050		ug/g		0.05	25-AUG-21
					ug/g			25-AUG-21
Chloroform			<0.050		ug/g		0.05	25-AUG-21
Chloroform			<0.050		ug/g		0.05	25-AUG-21

Workorder: L2629752 Report Date: 27-AUG-21 Page 12 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5569844								
WG3603678-1 MB cis-1,2-Dichloroethylene			<0.050		ug/g		0.05	25-AUG-21
cis-1,3-Dichloropropene			< 0.030		ug/g		0.03	25-AUG-21
Dibromochloromethane			< 0.050		ug/g		0.05	25-AUG-21
Dichlorodifluoromethane			< 0.050		ug/g		0.05	25-AUG-21
Ethylbenzene			<0.018		ug/g		0.018	25-AUG-21
n-Hexane			<0.050		ug/g		0.05	25-AUG-21
Methylene Chloride			< 0.050		ug/g		0.05	25-AUG-21
MTBE			<0.050		ug/g		0.05	25-AUG-21
m+p-Xylenes			< 0.030		ug/g		0.03	25-AUG-21
Methyl Ethyl Ketone			<0.50		ug/g		0.5	25-AUG-21
Methyl Isobutyl Ketone			<0.50		ug/g		0.5	25-AUG-21
o-Xylene			<0.020		ug/g		0.02	25-AUG-21
Styrene			< 0.050		ug/g		0.05	25-AUG-21
Tetrachloroethylene			< 0.050		ug/g		0.05	25-AUG-21
Toluene			<0.080		ug/g		0.08	25-AUG-21
trans-1,2-Dichloroethylen	e		<0.050		ug/g		0.05	25-AUG-21
trans-1,3-Dichloropropen	е		< 0.030		ug/g		0.03	25-AUG-21
Trichloroethylene			<0.010		ug/g		0.01	25-AUG-21
Trichlorofluoromethane			< 0.050		ug/g		0.05	25-AUG-21
Vinyl chloride			<0.020		ug/g		0.02	25-AUG-21
Surrogate: 1,4-Difluorobe	enzene		112.1		%		50-140	25-AUG-21
Surrogate: 4-Bromofluoro	benzene		107.5		%		50-140	25-AUG-21
WG3603678-5 MS 1,1,1,2-Tetrachloroethan	e	WG3603678-3	3 93.4		%		50-140	25-AUG-21
1,1,2,2-Tetrachloroethan			84.0		%		50-140	25-AUG-21
1,1,1-Trichloroethane			96.3		%		50-140	25-AUG-21
1,1,2-Trichloroethane			87.4		%		50-140	25-AUG-21
1,1-Dichloroethane			95.9		%		50-140	25-AUG-21
1,1-Dichloroethylene			96.6		%		50-140	25-AUG-21
1,2-Dibromoethane			84.8		%		50-140	25-AUG-21
1,2-Dichlorobenzene			97.0		%		50-140	25-AUG-21
1,2-Dichloroethane			95.1		%		50-140	25-AUG-21
1,2-Dichloropropane			96.6		%		50-140	25-AUG-21
1,3-Dichlorobenzene			98.9		%		50-140	25-AUG-21
, -			-				55 1 10	20 / 100 21

Workorder: L2629752 Report Date: 27-AUG-21 Page 13 of 14

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R5569844								
WG3603678-5 MS 1,4-Dichlorobenzene		WG3603678-			%		50.440	05 4110 04
Acetone			99.4		%		50-140	25-AUG-21
			83.1				50-140	25-AUG-21
Benzene			93.5		%		50-140	25-AUG-21
Bromodichloromethane			100.5		%		50-140	25-AUG-21
Bromoform			86.1		%		50-140	25-AUG-21
Bromomethane			94.2		%		50-140	25-AUG-21
Carbon tetrachloride			97.8		%		50-140	25-AUG-21
Chlorobenzene			96.5		%		50-140	25-AUG-21
Chloroform			93.1		%		50-140	25-AUG-21
cis-1,2-Dichloroethylene			93.7		%		50-140	25-AUG-21
cis-1,3-Dichloropropene			87.4		%		50-140	25-AUG-21
Dibromochloromethane			89.6		%		50-140	25-AUG-21
Dichlorodifluoromethane			95.0		%		50-140	25-AUG-21
Ethylbenzene			97.7		%		50-140	25-AUG-21
n-Hexane			97.3		%		50-140	25-AUG-21
Methylene Chloride			88.6		%		50-140	25-AUG-21
MTBE			96.4		%		50-140	25-AUG-21
m+p-Xylenes			98.6		%		50-140	25-AUG-21
Methyl Ethyl Ketone			76.8		%		50-140	25-AUG-21
Methyl Isobutyl Ketone			81.8		%		50-140	25-AUG-21
o-Xylene			97.5		%		50-140	25-AUG-21
Styrene			96.6		%		50-140	25-AUG-21
Tetrachloroethylene			99.8		%		50-140	25-AUG-21
Toluene			95.6		%		50-140	25-AUG-21
trans-1,2-Dichloroethyler	ne		96.9		%		50-140	25-AUG-21
trans-1,3-Dichloropropen	e		83.1		%		50-140	25-AUG-21
Trichloroethylene			102.3		%		50-140	25-AUG-21
Trichlorofluoromethane			99.7		%		50-140	25-AUG-21
Vinyl chloride			89.9		%		50-140	25-AUG-21
							_	

Workorder: L2629752 Report Date: 27-AUG-21

Client: Trafalgar Environmental Consultants (Newmarket) Page 14 of 14

P.O. Box 93316

Newmarket On L3X1A3

Contact: Robb Hudson

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-L	Lab Control Sample recovery was below ALS DQO. Reference Material and/or Matrix Spike results were acceptable. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2629752-1 Client Sample ID: 208 0'-5'

← -F2-	→-	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2629752-2 Client Sample ID: 208 15'-17'

← -F2-	→-	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at www.alsglobal.com.

Chain of Cus

AUG 2000 FRO	YELLOW - CLIENT COPY	WHITE - LABORATORY COPY YELLO	REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	REFER
1 Co IIII	ceived by:	1	Released by Company Co	Releas
	FINAL SHIPMENT RECEPTION (ALS use only)	INITIAL SHIPMENT	SHIPMENT RELEASE (client use)	
	12.7		O YES DESIGNATION OF THE PROPERTY OF THE PROPE	
Sample Custody Seals Intact:	Cooler Custody Seals intact: TEMPERATURES C FIN	C tu como	Are samples for human consumption/ use?	Are san
OND SBY	Submission Comments identified on Sample Receipt Notification:	O FILLING	aken from a Regulated/DW System?	Are san
N COOLING INITIATED	Cooling Method: None I ICE DICE PACKS FROZEN	(Excel COC only)	(use)	
se only)	SAMPLE RECEIPT DETAILS (ALS use only)	fy Limits for result evaluation by selecting from drop-down below		
		10-11		THE PART
				The second
			(05 (5-1)	
	7	12.87.07	202	
	200			
EXTE	P	Date Time (dd-mmm-yy) (hh.mm) Sample Type	ALS sample # Sample Identification and/or Coordinates (ALS use only) (This description will appear on the report)	ALS S
IPLE:	BER 10 14 14 10 10 10 10 10 10 10 10 10 10 10 10 10	ALS Contact: 140 Sampler: K17	ALS Lab Work Order # (ALS use only): [262975]	ALS
ST	CFH	Location:	SD:	LSD:
ORA	-1- 5-	Requisitioner:	PO / AFE:	PO / AF
AGE	-	Major/Minor Code: Routing Code:	ob#	Job #:
RI	NT	AFE/Cost Center: PO#	ALS Account # / Quote #	ALS A
EQL	AIN T	Oil and Gas Required Fields (client use)	Project Information	
	IEF	Email 2	zontact:	Contact:
ED	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below			Compa
	Analysis Request	Select Invoice Distribution: BMAIL MAIL FAX	Copy of Invoice with Report ☐ YES ☐ NO	
to confirm availability.	For all tests with rush TATs requested, please contact your AM to confirm availability.	Invoice Recipients	Invoice To Same as Report To	Invoice
and me mindly 8X-mas	Date and Time Required for all E&P TATs:	Email 3	Postal Code:	Postal (
	may apply to rush requests on weekends, statutory holidays and non-routine tests	0	City/Province:	City/Pro
	Sime day [2] If received by 10am M-S - 200% rush surcharge minimum	of Agenti Maring Maring US Joseph Comment		Street:
(Lean non mill)	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum	Select Distribution: PMAIL MAIL FAX	Company address below will appear on the final report	
AFFIX ALS BARCODE LABEL HERE	3 day [P3] If received by 3pm M-F - 25% rush surcharge minimum	provide details below if box	hone:	Phone:
	4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum	orts with COA PER D	ontact:	Contact:
	Routine [R] if received by 3pm M-F - no surcharges apply	Select Report Format: 10 PDF 10 PCEL 7 EDD (DIGITAL)	on made	Compa
	urnaround Time (TAT) Requested	Reports / Recipients	Report To Contact and company name below will appear on the final report	Report

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Ill in this form LEGIBLY. By the use of this form the user acknown

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form idges and agrees with the Terms and Conditions as specified on the back page of the white - report copy

Trafalgar Environmental Consultants

(Newmarket)

ATTN: Robb Hudson

P.O. Box 93316

Newmarket On L3X1A3

Date Received: 24-AUG-21

Report Date: 31-AUG-21 14:31 (MT)

Version: FINAL

Client Phone: 416-919-4960

Certificate of Analysis

Lab Work Order #: L2630993

Project P.O. #: KD Job Reference: KD

C of C Numbers: 20-892193

Legal Site Desc:

Amanda Overholster

Amanda Overholster Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2630993 CONT'D....

Job Reference: KD

PAGE 2 of 17

31-AUG-21 14:31 (MT)

Summary of Guideline Exceedances

Guideline ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
Ontario Reg	gulation 153/04 - April 1	5, 2011 Standards - T2-Ground Wat	er (Coarse Soil)-All Types of Property U	Jse		
L2630993-1	BH101	Anions and Nutrients	Chloride (CI)	808	790	mg/L
2630993-3	BH103	Anions and Nutrients	Chloride (CI)	5970	790	mg/L
		Dissolved Metals	Barium (Ba)-Dissolved Sodium (Na)-Dissolved	5530 1620000	1000 490000	ug/L ug/L
2630993-4	BH104	Anions and Nutrients Dissolved Metals	Chloride (Cl) Sodium (Na)-Dissolved	3500 1570000	790 490000	mg/L ug/L
ntario Reg	gulation 153/04 - April 1	5, 2011 Standards - T2-Ground Wat	er (Fine Soil)-All Types of Property Use	1		- 3
2630993-1	BH101	Anions and Nutrients	Chloride (CI)	808	790	mg/L
2630993-3	BH103	Anions and Nutrients Dissolved Metals	Chloride (Cl) Barium (Ba)-Dissolved	5970 5530	790 1000	mg/L ug/L
L2630993-4	BH104	Anions and Nutrients Dissolved Metals	Sodium (Na)-Dissolved Chloride (Cl) Sodium (Na)-Dissolved	1620000 3500 1570000	490000 790 490000	ug/L mg/L ug/L

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D.... Job Reference: KD PAGE 3 of 17 31-AUG-21 14:31 (MT)

Physical Tests - WATER

i ilysicai iests whiteit								
		Lab ID	L2630993-1	L2630993-2	L2630993-3	L2630993-4	L2630993-5	L2630993-6
	5	Sample Date	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21
		Sample ID	BH101	BH102	BH103	BH104	BH208	BH210
		Guide Limits	;					
Analyte	Unit	#1 #2						
Conductivity	mS/cm		3.74	1.33	20.2	9.61	1.11	0.455
рН	pH units		7.24	7.66	7.45	7.39	7.15	7.98

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D....

Job Reference: KD

PAGE 4 of 17

31-AUG-21 14:31 (MT)

Anions and Nutrients - WATER

		L	ab ID	L2630993-1	L2630993-2	L2630993-3	L2630993-4	L2630993-5	L2630993-6
		Sample	Date	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21
		Sam	ple ID	BH101	BH102	BH103	BH104	BH208	BH210
		Guide	Limits						
Analyte	Unit	#1	#2						
Chloride (CI)	mg/L	790	790	808 DLDS	223 DLDS	5970 DLDS	3500 DLDS	51.9 DLDS	23.5
Official (Oi)	mg/L	130	730	000	223	5970	3300	51.9	23.3

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D....

Job Reference: KD

PAGE 5 of 17

31-AUG-21 14:31 (MT)

Cyanides - WATER

Gyannado III/III									
		L	ab ID	L2630993-1	L2630993-2	L2630993-3	L2630993-4	L2630993-5	L2630993-6
		Sample	Date	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21
		Sam	ple ID	BH101	BH102	BH103	BH104	BH208	BH210
		Guide I	imits						
Analyte	Unit	#1	#2						
Cyanide, Weak Acid Diss	ug/L	66	66	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D....

Job Reference: KD

PAGE 6 of 17

31-AUG-21 14:31 (MT)

Dissolved Metals - WATER

		Sample	ab ID Date ple ID	L2630993-1 24-AUG-21 BH101	L2630993-2 24-AUG-21 BH102	L2630993-3 24-AUG-21 BH103	L2630993-4 24-AUG-21 BH104	L2630993-5 24-AUG-21 BH208	L2630993-6 24-AUG-21 BH210
Analyte	Unit	Guide #1	Limits #2						
Dissolved Mercury Filtration Location		-	-	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD
Dissolved Metals Filtration Location		-	-	FIELD	FIELD	FIELD	FIELD	FIELD	FIELD
Antimony (Sb)-Dissolved	ug/L	6	6	<1.0 DLHC	0.13	<1.0 DLHC	<1.0 DLHC	0.12	0.19
Arsenic (As)-Dissolved	ug/L	25	25	<1.0 DLHC	0.42	<1.0 DLHC	<1.0 DLHC	0.36	0.61
Barium (Ba)-Dissolved	ug/L	1000	1000	110 DLHC	265	5530 DLHC	354 DLHC	147	113
Beryllium (Be)-Dissolved	ug/L	4	4	<1.0 DLHC	<0.10	<1.0 DLHC	<1.0 DLHC	<0.10	<0.10
Boron (B)-Dissolved	ug/L	5000	5000	<100 DLHC	26	<100 DLHC	<100 DLHC	29	53
Cadmium (Cd)-Dissolved	ug/L	2.7	2.7	< 0.050 DLHC	<0.010	<0.050 ^{DLHC}	<0.050 ^{DLHC}	<0.010	<0.010
Chromium (Cr)-Dissolved	ug/L	50	50	<5.0 DLHC	<0.50	<5.0 DLHC	<5.0 DLHC	<0.50	<0.50
Cobalt (Co)-Dissolved	ug/L	3.8	3.8	<1.0 DLHC	<0.10	1.6 DLHC	<1.0 DLHC	<0.10	<0.10
Copper (Cu)-Dissolved	ug/L	87	87	4.7 DLHC	1.15	<2.0 DLHC	2.1 DLHC	1.30	1.97
Lead (Pb)-Dissolved	ug/L	10	10	<0.50 DLHC	<0.050	<0.50 DLHC	<0.50 DLHC	<0.050	<0.050
Mercury (Hg)-Dissolved	ug/L	0.29	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Molybdenum (Mo)-Dissolved	ug/L	70	70	4.47 DLHC	11.6	11.1 DLHC	32.2 DLHC	2.34	25.5
Nickel (Ni)-Dissolved	ug/L	100	100	<5.0 DLHC	<0.50	<5.0 DLHC	<5.0 DLHC	1.07	<0.50
Selenium (Se)-Dissolved	ug/L	10	10	<0.50 DLHC	1.72	<0.50 DLHC	0.68 DLHC	0.323	0.730
Silver (Ag)-Dissolved	ug/L	1.5	1.5	<0.50 DLHC	<0.050	<0.50 DLHC	<0.50 DLHC	<0.050	<0.050
Sodium (Na)-Dissolved	ug/L	490000	490000	370000 ^{DLHC}	102000 ^{DLHC}	1620000 BLHC	1570000 BLHC	72900	113000 ^{DLHC}
Thallium (TI)-Dissolved	ug/L	2	2	0.11 DLHC	0.067	<0.10 DLHC	0.11 DLHC	0.029	0.013
Uranium (U)-Dissolved	ug/L	20	20	4.56 DLHC	3.30	1.74 DLHC	4.72 DLHC	1.60	1.79
Vanadium (V)-Dissolved	ug/L	6.2	6.2	<5.0 DLHC	0.52	<5.0 DLHC	<5.0 DLHC	0.57	0.93
Zinc (Zn)-Dissolved	ug/L	1100	1100	<10 DLHC	<1.0	<10 DLHC	<10 DLHC	1.0	1.2

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D....

Job Reference: KD

PAGE 7 of 17

31-AUG-21 14:31 (MT)

Speciated Metals - WATER

		La	b ID	L2630993-1	L2630993-2	L2630993-3	L2630993-4	L2630993-5	L2630993-6
		Sample	Date	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21
		Samp	le ID	BH101	BH102	BH103	BH104	BH208	BH210
		Guide Li	mits						
	Unit	#1	#2						
Analyte	Offic	#1	#2						

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D....

Job Reference: KD

PAGE 8 of 17
31-AUG-21 14:31 (MT)

Volatile Organic Compounds - WATER

		Sample	Lab ID e Date ple ID	L2630993-1 24-AUG-21 BH101	L2630993-2 24-AUG-21 BH102	L2630993-3 24-AUG-21 BH103	L2630993-4 24-AUG-21 BH104	L2630993-5 24-AUG-21 BH208	L2630993-6 24-AUG-21 BH210
Analyte	Unit	Guide #1	Limits #2						
Acetone	ug/L	2700	2700	<30	<30	<30	<30	<30 OWP	<30
Benzene	ug/L	5	5	<0.50	<0.50	<0.50	<0.50	0.83 OWP	<0.50
Bromodichloromethane	ug/L	16	16	<2.0	<2.0	<2.0	<2.0	<2.0 OWP	<2.0
Bromoform	ug/L	25	25	<5.0	<5.0	<5.0	<5.0	<5.0 OWP	<5.0
Bromomethane	ug/L	0.89	0.89	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
Carbon tetrachloride	ug/L	0.79	5	<0.20	<0.20	<0.20	<0.20	<0.20 OWP	<0.20
Chlorobenzene	ug/L	30	30	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
Dibromochloromethane	ug/L	25	25	<2.0	<2.0	<2.0	<2.0	<2.0 OWP	<2.0
Chloroform	ug/L	2.4	22	<1.0	<1.0	<1.0	<1.0	<1.0 OWP	<1.0
1,2-Dibromoethane	ug/L	0.2	0.2	<0.20	<0.20	<0.20	<0.20	<0.20 OWP	<0.20
1,2-Dichlorobenzene	ug/L	3	3	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
1,3-Dichlorobenzene	ug/L	59	59	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
1,4-Dichlorobenzene	ug/L	1	1	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
Dichlorodifluoromethane	ug/L	590	590	<2.0	<2.0	<2.0	<2.0	<2.0 OWP	<2.0
1,1-Dichloroethane	ug/L	5	5	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
1,2-Dichloroethane	ug/L	1.6	5	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
1,1-Dichloroethylene	ug/L	1.6	14	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
cis-1,2-Dichloroethylene	ug/L	1.6	17	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
trans-1,2-Dichloroethylene	ug/L	1.6	17	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
Methylene Chloride	ug/L	50	50	<5.0	<5.0	<5.0	<5.0	<5.0 OWP	<5.0
1,2-Dichloropropane	ug/L	5	5	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
cis-1,3-Dichloropropene	ug/L	-	-	<0.30	<0.30	<0.30	<0.30	<0.30 OWP	<0.30
trans-1,3-Dichloropropene	ug/L	-	-	<0.30	<0.30	<0.30	<0.30	<0.30 OWP	<0.30
1,3-Dichloropropene (cis & trans)	ug/L	0.5	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	ug/L	2.4	2.4	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
n-Hexane	ug/L	51	520	<0.50	<0.50	<0.50	<0.50	0.62 OWP	<0.50
Methyl Ethyl Ketone	ug/L	1800	1800	<20	<20	<20	<20	<20 OWP	<20
Methyl Isobutyl Ketone	ug/L	640	640	<20	<20	<20	<20	<20 OWP	<20
MTBE	ug/L	15	15	<2.0	<2.0	<2.0	<2.0	<2.0 OWP	<2.0
Styrene	ug/L	5.4	5.4	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D....

Job Reference: KD

PAGE 9 of 17
31-AUG-21 14:31 (MT)

Volatile Organic Compounds - WATER

			Lab ID	L2630993-1	L2630993-2	L2630993-3	L2630993-4	L2630993-5	L2630993-6
		Sample		24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21
			ple ID	BH101	BH102	BH103	BH104	BH208	BH210
Analyte	Unit	Guide #1	Limits #2						
1,1,1,2-Tetrachloroethane	ug/L	1.1	1.1	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
1,1,2,2-Tetrachloroethane	ug/L	1	1	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
Tetrachloroethylene	ug/L	1.6	17	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
Toluene	ug/L	24	24	<0.50	<0.50	<0.50	<0.50	1.55 OWP	<0.50
1,1,1-Trichloroethane	ug/L	200	200	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
1,1,2-Trichloroethane	ug/L	4.7	5	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
Trichloroethylene	ug/L	1.6	5	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
Trichlorofluoromethane	ug/L	150	150	<5.0	<5.0	<5.0	<5.0	<5.0 OWP	<5.0
Vinyl chloride	ug/L	0.5	1.7	<0.50	<0.50	<0.50	<0.50	<0.50 OWP	<0.50
o-Xylene	ug/L	-	-	<0.30	<0.30	<0.30	<0.30	0.30 OWP	< 0.30
m+p-Xylenes	ug/L	-	-	<0.40	<0.40	<0.40	<0.40	0.87 OWP	<0.40
Xylenes (Total)	ug/L	300	300	<0.50	<0.50	<0.50	<0.50	1.17	<0.50
Surrogate: 4-Bromofluorobenzene	%	-	-	77.4	79.1	75.8	75.3	74.5	74.8
Surrogate: 1,4-Difluorobenzene	%	-	-	92.3	92.3	95.0	95.9	97.5	96.3

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D....

Job Reference: KD

PAGE 10 of 17

31-AUG-21 14:31 (MT)

Hydrocarbons - WATER

riyurocarbons - WATEN									
			Lab ID	L2630993-1	L2630993-2	L2630993-3	L2630993-4	L2630993-5	L2630993-6
		Sample	e Date	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21	24-AUG-21
		Sam	ple ID	BH101	BH102	BH103	BH104	BH208	BH210
Analyte	Unit	Guide #1	Limits #2						
F1 (C6-C10)	ug/L	750	750	<25	<25	<25	<25	<25 OWP	<25
F1-BTEX	ug/L	750	750	<25	<25	<25	<25	<25	<25
F2 (C10-C16)	ug/L	150	150	<100	<100	<100	<100	<100	<100
F2-Naphth	ug/L	-	-	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	ug/L	500	500	<250	<250	<250	<250	<250	<250
F3-PAH	ug/L	-	-	<250	<250	<250	<250	<250	<250
F4 (C34-C50)	ug/L	500	500	<250	<250	<250	<250	<250	<250
Total Hydrocarbons (C6-C50)	ug/L	-	-	<370	<370	<370	<370	<370	<370
Chrom. to baseline at nC50		-	-	YES	YES	YES	YES	YES	YES
Surrogate: 2-Bromobenzotrifluoride	%	-	-	82.4	82.8	78.9	78.0	78.0	78.9
Surrogate: 3,4-Dichlorotoluene	%	-	-	86.2	92.5	95.8	91.8	80.3	97.1

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D....

Job Reference: KD

PAGE 11 of 17

31-AUG-21 14:31 (MT)

Polycyclic Aromatic Hydrocarbons - WATER

Analyte		Lab ID Sample Date Sample ID		L2630993-1 24-AUG-21 BH101	L2630993-2 24-AUG-21 BH102	L2630993-3 24-AUG-21 BH103	L2630993-4 24-AUG-21 BH104	L2630993-5 24-AUG-21 BH208	L2630993-6 24-AUG-21 BH210
	Unit	Guide #1	Limits #2						
Acenaphthene	ug/L	4.1	4.1	<0.020	0.053 ^R	0.021 R	0.061 R	<0.020	0.025 R
Acenaphthylene	ug/L	1	1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Anthracene	ug/L	2.4	2.4	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(a)anthracene	ug/L	1	1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(a)pyrene	ug/L	0.01	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(b&j)fluoranthene	ug/L	0.1	0.1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(g,h,i)perylene	ug/L	0.2	0.2	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(k)fluoranthene	ug/L	0.1	0.1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Chrysene	ug/L	0.1	0.1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Dibenz(a,h)anthracene	ug/L	0.2	0.2	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Fluoranthene	ug/L	0.41	0.41	0.043	<0.020	<0.020	0.026	<0.020	<0.020
Fluorene	ug/L	120	120	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Indeno(1,2,3-cd)pyrene	ug/L	0.2	0.2	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
1+2-Methylnaphthalenes	ug/L	3.2	3.2	<0.028	<0.028	<0.028	<0.028	0.100	<0.028
1-Methylnaphthalene	ug/L	3.2	3.2	<0.020	<0.020	<0.020	0.026	0.051	<0.020
2-Methylnaphthalene	ug/L	3.2	3.2	<0.020	<0.020	<0.020	<0.020	0.049	<0.020
Naphthalene	ug/L	11	11	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Phenanthrene	ug/L	1	1	<0.020	0.020	<0.020	<0.020	<0.020	<0.020
Pyrene	ug/L	4.1	4.1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Surrogate: Chrysene d12	%	-	-	98.2	97.1	93.5	104.6	98.2	105.0
Surrogate: Naphthalene d8	%	-	-	101.0	109.8	105.1	104.5	104.2	114.3
Surrogate: Phenanthrene d10	%	-	-	99.3	100.3	94.2	101.0	98.3	105.8

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D....

Job Reference: KD

PAGE 12 of 17

31-AUG-21 14:31 (MT)

Polychlorinated Biphenyls - WATER

			Lab ID	L2630993-3	L2630993-4	L2630993-6
		Sampl	e Date	24-AUG-21	24-AUG-21	24-AUG-21
		San	nple ID	BH103	BH104	BH210
Analyte	Unit	Guide #1	Limits #2			
Aroclor 1242	ug/L	-	-	<0.020	<0.020	<0.020
Aroclor 1248	ug/L	-	-	<0.020	<0.020	<0.020
Aroclor 1254	ug/L	-	-	<0.020	<0.020	<0.020
Aroclor 1260	ug/L	-	-	<0.020	<0.020	<0.020
Surrogate: Decachlorobiphenyl	%	-	-	75.8	91.7	98.5
Total PCBs	ug/L	3	3	<0.040	<0.040	<0.040
Surrogate: Tetrachloro-m-xylene	%	-	-	90.4	92.8	89.8

Guide Limit #1: T2-Ground Water (Coarse Soil)-All Types of Property Use Guide Limit #2: T2-Ground Water (Fine Soil)-All Types of Property Use

^{*} Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2630993 CONT'D....
Job Reference: KD
PAGE 13 of 17
31-AUG-21 14:31 (MT)

Qualifiers for Individual Parameters Listed:

Qualifier	Description
R	The ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
OWP	Organic water sample contained visible sediment (must be included as part of analysis). Measured concentrations of organic substances in water can be biased high due to presence of

L2630993 CONT'D.... Job Reference: KD PAGE 14 of 17 31-AUG-21 14:31 (MT)

sediment.

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

CL-IC-N-WT Water Chloride by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Water Cyanide (WAD)-O.Reg 153/04 APHA 4500CN I-Weak acid Dist Colorimet

Weak acid dissociable cyanide (WAD) is determined by undergoing a distillation procedure. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

CR-CR6-IC-R511-WT Water Hex Chrom-O.Reg 153/04 (July 2011) EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

EC-R511-WT Water Conductivity-O.Reg 153/04 (July 2011) APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

EC-SCREEN-WT Water Conductivity Screen (Internal Use APHA 2510

Only)

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

F1-F4-511-CALC-WT Water F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-L

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Reference Information

L2630993 CONT'D....
Job Reference: KD
PAGE 15 of 17
31-AUG-21 14:31 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HG-D-UG/L-CVAA-WT Water Diss. Mercury in Water by CVAAS EPA 1631E (mod)

(ug/L)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-D-UG/L-MS-WT Water Diss. Metals in Water by ICPMS (ug/L) EPA 200.8

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

METHYLNAPS-CALC-WT Water PAH-Calculated Parameters SW846 8270

PAH-511-WT Water PAH-O. Reg 153/04 (July 2011) SW846 3510/8270

Aqueous samples, fortified with surrogates, are extracted using liquid/liquid extraction technique. The sample extracts are concentrated and then analyzed using GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PCB-511-WT Water PCB-O. Reg 153/04 (July 2011) SW846 3510/8082

Aqueous samples are extracted, then concentrated, reconstituted, and analyzed by GC/MS.

Reference Information

L2630993 CONT'D.... Job Reference: KD PAGE 16 of 17 31-AUG-21 14:31 (MT)

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT Water pH APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C

VOC-511-HS-WT Water VOC by GCMS HS O.Reg 153/04 (July SW846 8260

2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011 and as of November 30, 2020), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

20-892193

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Reference Information

L2630993 CONT'D.... Job Reference: KD PAGE 17 of 17 31-AUG-21 14:31 (MT)

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2630993 Report Date: 31-AUG-21 Page 1 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix R	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL-IC-N-WT	Water							
Batch R5569979 WG3604439-4 DUP Chloride (CI)		NG3604439-3 23.5	23.5		mg/L	0.0	20	25-AUG-21
WG3604439-2 LCS Chloride (CI)			101.5		%		90-110	25-AUG-21
WG3604439-1 MB Chloride (CI)			<0.50		mg/L		0.5	25-AUG-21
WG3604439-5 MS Chloride (CI)	\	WG3604439-3	101.3		%		75-125	25-AUG-21
CN-WAD-R511-WT	Water							
Batch R5570320								
WG3605311-9 DUP Cyanide, Weak Acid Dis		NG3605311-8 <2.0	<2.0	RPD-NA	ug/L	N/A	20	26-AUG-21
WG3605311-7 LCS Cyanide, Weak Acid Dis	S		96.3		%		80-120	26-AUG-21
WG3605311-6 MB Cyanide, Weak Acid Dis			<2.0		ug/L		2	26-AUG-21
WG3605311-10 MS Cyanide, Weak Acid Dis		NG3605311-8	103.2		%		75-125	26-AUG-21
CR-CR6-IC-R511-WT	Water							
Batch R5570041 WG3604715-4 DUP Chromium, Hexavalent		WG3604715-3 <0.50	<0.50	RPD-NA	ug/L	N/A	20	25-AUG-21
WG3604715-2 LCS Chromium, Hexavalent			94.7		%		80-120	25-AUG-21
WG3604715-1 MB Chromium, Hexavalent			<0.50		ug/L		0.5	25-AUG-21
WG3604715-5 MS Chromium, Hexavalent	\	NG3604715-3	92.7		%		70-130	25-AUG-21
Batch R5571017								
WG3605662-4 DUP Chromium, Hexavalent		NG3605662-3 < 0.50	<0.50	RPD-NA	ug/L	N/A	20	26-AUG-21
WG3605662-2 LCS Chromium, Hexavalent			95.4		%		80-120	26-AUG-21
WG3605662-1 MB Chromium, Hexavalent			<0.50		ug/L		0.5	26-AUG-21
WG3605662-5 MS Chromium, Hexavalent	\	WG3605662-3	96.0		%		70-130	26-AUG-21

Workorder: L2630993 Report Date: 31-AUG-21 Page 2 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-R511-WT	Water							
Batch R5570137								
WG3604091-4 DUP Conductivity		WG3604091-3 1.12	1.16		mS/cm	3.5	10	25-AUG-21
WG3604091-2 LCS Conductivity			98.6		%		90-110	25-AUG-21
WG3604091-1 MB Conductivity			<0.0060		mS/cm		0.006	25-AUG-21
F1-HS-511-WT	Water							
Batch R5570244								
WG3604949-4 DUP F1 (C6-C10)		WG3604949-3 <25	<25	RPD-NA	ug/L	N/A	30	26-AUG-21
WG3604949-1 LCS F1 (C6-C10)			118.4		%		80-120	26-AUG-21
WG3604949-2 MB F1 (C6-C10)			<25		ug/L		25	26-AUG-21
Surrogate: 3,4-Dichloroto	oluene		99.3		%		60-140	26-AUG-21
WG3604949-5 MS		WG3604949-3						20710021
F1 (C6-C10)			98.0		%		60-140	26-AUG-21
F2-F4-511-WT	Water							
Batch R5569898								
WG3603937-2 LCS F2 (C10-C16)			96.2		%		70-130	25-AUG-21
F3 (C16-C34)			100.3		%		70-130	25-AUG-21
F4 (C34-C50)			96.9		%		70-130	25-AUG-21
WG3603937-1 MB F2 (C10-C16)			<100		ug/L		100	25-AUG-21
F3 (C16-C34)			<250		ug/L		250	25-AUG-21
F4 (C34-C50)			<250		ug/L		250	25-AUG-21
Surrogate: 2-Bromobenz	otrifluoride		75.5		%		60-140	25-AUG-21
HG-D-UG/L-CVAA-WT	Water							
Batch R5571068								
WG3605736-4 DUP Mercury (Hg)-Dissolved		WG3605736-3 < 0.0050	<0.0050	RPD-NA	ug/L	N/A	20	27-AUG-21
WG3605736-2 LCS Mercury (Hg)-Dissolved			97.2		%		80-120	27-AUG-21
WG3605736-1 MB Mercury (Hg)-Dissolved			<0.0050		ug/L		0.005	27-AUG-21
WG3605736-6 MS		WG3605736-5			-			

Workorder: L2630993 Report Date: 31-AUG-21 Page 3 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-D-UG/L-CVAA-WT	Water							
Batch R5571068 WG3605736-6 MS Mercury (Hg)-Dissolved		WG3605736-5	100.0		%		70-130	27-AUG-21
MET-D-UG/L-MS-WT	Water							
Batch R5569486								
WG3603975-4 DUP Antimony (Sb)-Dissolved		WG3603975-3 <0.10	<0.10	RPD-NA	ug/L	N/A	20	25-AUG-21
Arsenic (As)-Dissolved		0.69	0.68		ug/L	0.4	20	25-AUG-21
Barium (Ba)-Dissolved		18.8	18.6		ug/L	1.1	20	25-AUG-21
Beryllium (Be)-Dissolved		<0.10	<0.10	RPD-NA	ug/L	N/A	20	25-AUG-21
Boron (B)-Dissolved		19	19		ug/L	1.5	20	25-AUG-21
Cadmium (Cd)-Dissolved		<0.0050	<0.0050	RPD-NA	ug/L	N/A	20	25-AUG-21
Chromium (Cr)-Dissolved	I	<0.50	<0.50	RPD-NA	ug/L	N/A	20	25-AUG-21
Cobalt (Co)-Dissolved		<0.10	<0.10	RPD-NA	ug/L	N/A	20	25-AUG-21
Copper (Cu)-Dissolved		0.51	0.51		ug/L	1.0	20	25-AUG-21
Lead (Pb)-Dissolved		<0.050	< 0.050	RPD-NA	ug/L	N/A	20	25-AUG-21
Molybdenum (Mo)-Dissolv	ved	<0.050	< 0.050	RPD-NA	ug/L	N/A	20	25-AUG-21
Nickel (Ni)-Dissolved		<0.50	<0.50	RPD-NA	ug/L	N/A	20	25-AUG-21
Selenium (Se)-Dissolved		0.062	0.060		ug/L	3.3	20	25-AUG-21
Silver (Ag)-Dissolved		< 0.050	< 0.050	RPD-NA	ug/L	N/A	20	25-AUG-21
Sodium (Na)-Dissolved		1870	1830		ug/L	1.9	20	25-AUG-21
Thallium (TI)-Dissolved		<0.010	<0.010	RPD-NA	ug/L	N/A	20	25-AUG-21
Uranium (U)-Dissolved		<0.010	<0.010	RPD-NA	ug/L	N/A	20	25-AUG-21
Vanadium (V)-Dissolved		<0.50	<0.50	RPD-NA	ug/L	N/A	20	25-AUG-21
Zinc (Zn)-Dissolved		6.0	5.9		ug/L	1.9	20	25-AUG-21
WG3603975-2 LCS								
Antimony (Sb)-Dissolved			100.6		%		80-120	25-AUG-21
Arsenic (As)-Dissolved			98.2		%		80-120	25-AUG-21
Barium (Ba)-Dissolved			93.1		%		80-120	25-AUG-21
Beryllium (Be)-Dissolved			102.3		%		80-120	25-AUG-21
Boron (B)-Dissolved			97.3		%		80-120	25-AUG-21
Cadmium (Cd)-Dissolved			90.2		%		80-120	25-AUG-21
Chromium (Cr)-Dissolved			92.8		%		80-120	25-AUG-21
Cobalt (Co)-Dissolved			93.9		%		80-120	25-AUG-21
Copper (Cu)-Dissolved			92.8				80-120	

Workorder: L2630993 Report Date: 31-AUG-21 Page 4 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R5569486	6							
WG3603975-2 LCS	1		00.0		0/			
Copper (Cu)-Dissolved			92.8		%		80-120	25-AUG-21
Lead (Pb)-Dissolved			95.9		%		80-120	25-AUG-21
Molybdenum (Mo)-Diss	solvea		101.2		%		80-120	25-AUG-21
Nickel (Ni)-Dissolved			93.0		%		80-120	25-AUG-21
Selenium (Se)-Dissolve	ed		96.8		%		80-120	25-AUG-21
Silver (Ag)-Dissolved			97.4		%		80-120	25-AUG-21
Sodium (Na)-Dissolved			96.6		%		80-120	25-AUG-21
Thallium (TI)-Dissolved			96.7		%		80-120	25-AUG-21
Uranium (U)-Dissolved			97.6		%		80-120	25-AUG-21
Vanadium (V)-Dissolve	ed		94.9		%		80-120	25-AUG-21
Zinc (Zn)-Dissolved			91.6		%		80-120	25-AUG-21
WG3603975-1 MB Antimony (Sb)-Dissolve	ad		<0.10		ug/L		0.1	25 ALIC 24
Arsenic (As)-Dissolved			<0.10		ug/L		0.1	25-AUG-21
Barium (Ba)-Dissolved			<0.10		•		0.1	25-AUG-21
	a d		<0.10		ug/L		0.1	25-AUG-21
Beryllium (Be)-Dissolve	eu		<10		ug/L			25-AUG-21
Boron (B)-Dissolved	a d				ug/L		10	25-AUG-21
Cadmium (Cd)-Dissolv			<0.0050		ug/L		0.005	25-AUG-21
Chromium (Cr)-Dissolv	reu		<0.50		ug/L		0.5	25-AUG-21
Cobalt (Co)-Dissolved	1		<0.10		ug/L		0.1	25-AUG-21
Copper (Cu)-Dissolved			<0.20		ug/L		0.2	25-AUG-21
Lead (Pb)-Dissolved			<0.050		ug/L		0.05	25-AUG-21
Molybdenum (Mo)-Diss	solvea		<0.050		ug/L		0.05	25-AUG-21
Nickel (Ni)-Dissolved			<0.50		ug/L		0.5	25-AUG-21
Selenium (Se)-Dissolve	ea		<0.050		ug/L		0.05	25-AUG-21
Silver (Ag)-Dissolved			<0.050		ug/L		0.05	25-AUG-21
Sodium (Na)-Dissolved			<50		ug/L		50	25-AUG-21
Thallium (TI)-Dissolved			<0.010		ug/L		0.01	25-AUG-21
Uranium (U)-Dissolved			<0.010		ug/L		0.01	25-AUG-21
Vanadium (V)-Dissolve	ed		<0.50		ug/L		0.5	25-AUG-21
Zinc (Zn)-Dissolved			<1.0		ug/L		1	25-AUG-21
WG3603975-5 MS Antimony (Sb)-Dissolve	ed.	WG3603975-6	104.1		%		70-130	25 ALIC 24
Arsenic (As)-Dissolved					%			25-AUG-21
AISCHIC (AS)-DISSUIVED			102.5		/0		70-130	25-AUG-21

Workorder: L2630993 Report Date: 31-AUG-21 Page 5 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R55694	86							
WG3603975-5 MS	a.	WG3603975-	-		0/			
Barium (Ba)-Dissolve			N/A	MS-B	%		=	25-AUG-21
Beryllium (Be)-Dissol	vea		101.1		%		70-130	25-AUG-21
Boron (B)-Dissolved			N/A	MS-B	%		-	25-AUG-21
Cadmium (Cd)-Disso			87.8		%		70-130	25-AUG-21
Chromium (Cr)-Disso			93.2		%		70-130	25-AUG-21
Cobalt (Co)-Dissolved			91.1		%		70-130	25-AUG-21
Copper (Cu)-Dissolve	ed		88.4		%		70-130	25-AUG-21
Lead (Pb)-Dissolved			91.6		%		70-130	25-AUG-21
Molybdenum (Mo)-Di			100.4		%		70-130	25-AUG-21
Nickel (Ni)-Dissolved			89.6		%		70-130	25-AUG-21
Selenium (Se)-Dissol			109.9		%		70-130	25-AUG-21
Silver (Ag)-Dissolved			85.8		%		70-130	25-AUG-21
Sodium (Na)-Dissolve	ed		N/A	MS-B	%		-	25-AUG-21
Thallium (TI)-Dissolve	ed		93.2		%		70-130	25-AUG-21
Uranium (U)-Dissolve	ed		N/A	MS-B	%		-	25-AUG-21
Vanadium (V)-Dissolv	ved		96.2		%		70-130	25-AUG-21
Zinc (Zn)-Dissolved			88.8		%		70-130	25-AUG-21
PAH-511-WT	Water							
Batch R55701	42							
WG3603937-2 LCS			00.4		0/			
1-Methylnaphthalene			89.4		%		50-140	26-AUG-21
2-Methylnaphthalene			86.3		%		50-140	26-AUG-21
Acenaphthene			87.4		%		60-130	26-AUG-21
Acenaphthylene			87.5		%		60-130	26-AUG-21
Anthracene			78.2		%		50-140	26-AUG-21
Benzo(a)anthracene			94.9		%		60-140	26-AUG-21
Benzo(a)pyrene			81.9		%		50-140	26-AUG-21
Benzo(b&j)fluoranthe	ne		83.0		%		60-130	26-AUG-21
Benzo(g,h,i)perylene			99.2		%		50-140	26-AUG-21
Benzo(k)fluoranthene)		90.0		%		50-140	26-AUG-21
Chrysene			90.5		%		60-140	26-AUG-21
Dibenz(a,h)anthracer	ne		93.8		%		50-140	26-AUG-21
Fluoranthene			88.7		%		60-140	26-AUG-21
					%			

Workorder: L2630993 Report Date: 31-AUG-21 Page 6 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Water							
Batch R5570142								
WG3603937-2 LCS Fluorene			90.9		%		60-130	26-AUG-21
Indeno(1,2,3-cd)pyrene			100.7		%		50-140	26-AUG-21 26-AUG-21
Naphthalene			80.8		%		50-140	26-AUG-21
Phenanthrene			90.3		%		60-140	26-AUG-21
Pyrene			88.4		%		60-140	26-AUG-21
WG3603937-1 MB			00.4		70		00-140	20-A0G-21
1-Methylnaphthalene			<0.020		ug/L		0.02	26-AUG-21
2-Methylnaphthalene			<0.020		ug/L		0.02	26-AUG-21
Acenaphthene			<0.020		ug/L		0.02	26-AUG-21
Acenaphthylene			<0.020		ug/L		0.02	26-AUG-21
Anthracene			<0.020		ug/L		0.02	26-AUG-21
Benzo(a)anthracene			<0.020		ug/L		0.02	26-AUG-21
Benzo(a)pyrene			<0.010		ug/L		0.01	26-AUG-21
Benzo(b&j)fluoranthene			<0.020		ug/L		0.02	26-AUG-21
Benzo(g,h,i)perylene			<0.020		ug/L		0.02	26-AUG-21
Benzo(k)fluoranthene			<0.020		ug/L		0.02	26-AUG-21
Chrysene			<0.020		ug/L		0.02	26-AUG-21
Dibenz(a,h)anthracene			<0.020		ug/L		0.02	26-AUG-21
Fluoranthene			<0.020		ug/L		0.02	26-AUG-21
Fluorene			<0.020		ug/L		0.02	26-AUG-21
Indeno(1,2,3-cd)pyrene			<0.020		ug/L		0.02	26-AUG-21
Naphthalene			<0.050		ug/L		0.05	26-AUG-21
Phenanthrene			<0.020		ug/L		0.02	26-AUG-21
Pyrene			<0.020		ug/L		0.02	26-AUG-21
Surrogate: Naphthalene	d8		94.5		%		60-140	26-AUG-21
Surrogate: Phenanthren	e d10		94.8		%		60-140	26-AUG-21
Surrogate: Chrysene d1	2		91.2		%		50-150	26-AUG-21
PCB-511-WT	Water							
Batch R5569885								
WG3603585-2 LCS			404.5		0/			
Aroclor 1242			104.8		%		60-140	25-AUG-21
Aroclor 1248			90.4		%		60-140	25-AUG-21
Aroclor 1254			96.0		%		60-140	25-AUG-21
Aroclor 1260			108.4		%		60-140	25-AUG-21

Workorder: L2630993 Report Date: 31-AUG-21 Page 7 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PCB-511-WT	Water							
Batch R556988								
WG3603585-1 MB	J							
Aroclor 1242			<0.020		ug/L		0.02	25-AUG-21
Aroclor 1248			<0.020		ug/L		0.02	25-AUG-21
Aroclor 1254			<0.020		ug/L		0.02	25-AUG-21
Aroclor 1260			<0.020		ug/L		0.02	25-AUG-21
Surrogate: Decachloro	biphenyl		93.2		%		50-150	25-AUG-21
Surrogate: Tetrachloro	o-m-xylene		99.0		%		50-150	25-AUG-21
PH-WT	Water							
Batch R557013	7							
WG3604091-4 DUP		WG3604091			ml l .ucita	0.00	0.0	05 4110 5:
pH		11.38	11.35	J	pH units	0.03	0.2	25-AUG-21
WG3604091-2 LCS pH			6.99		pH units		6.9-7.1	25-AUG-21
VOC-511-HS-WT	Water				P		0.0 7.1	207.00 21
Batch R557024								
WG3604949-4 DUP	•	WG3604949-	-3					
1,1,1,2-Tetrachloroeth	ane	<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
1,1,2,2-Tetrachloroeth	ane	<0.50	< 0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
1,1,1-Trichloroethane		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
1,1,2-Trichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
1,1-Dichloroethane		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
1,1-Dichloroethylene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
1,2-Dibromoethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	26-AUG-21
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
1,2-Dichloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
1,2-Dichloropropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
1,3-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
Acetone		<30	<30	RPD-NA	ug/L	N/A	30	26-AUG-21
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
Bromodichloromethan	е	<2.0	<2.0	RPD-NA	ug/L	N/A	30	26-AUG-21
Bromoform		<5.0	<5.0	RPD-NA	ug/L	N/A	30	26-AUG-21
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	26-AUG-21

Workorder: L2630993 Report Date: 31-AUG-21 Page 8 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5570244	ļ							
WG3604949-4 DUP Chlorobenzene		WG3604949- <0.50	3 <0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	26-AUG-21
cis-1,2-Dichloroethylen	е	<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
cis-1,3-Dichloropropen	е	<0.30	< 0.30	RPD-NA	ug/L	N/A	30	26-AUG-21
Dibromochloromethane)	<2.0	<2.0	RPD-NA	ug/L	N/A	30	26-AUG-21
Dichlorodifluoromethan	е	<2.0	<2.0	RPD-NA	ug/L	N/A	30	26-AUG-21
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	26-AUG-21
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	26-AUG-21
Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	26-AUG-21
Methylene Chloride		<5.0	<5.0	RPD-NA	ug/L	N/A	30	26-AUG-21
MTBE		<2.0	<2.0	RPD-NA	ug/L	N/A	30	26-AUG-21
o-Xylene		<0.30	< 0.30	RPD-NA	ug/L	N/A	30	26-AUG-21
Styrene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
Tetrachloroethylene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
Toluene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
trans-1,2-Dichloroethyle	ene	<0.50	< 0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
trans-1,3-Dichloroprope	ene	<0.30	< 0.30	RPD-NA	ug/L	N/A	30	26-AUG-21
Trichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
Trichlorofluoromethane	;	<5.0	<5.0	RPD-NA	ug/L	N/A	30	26-AUG-21
Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	26-AUG-21
WG3604949-1 LCS								
1,1,1,2-Tetrachloroetha			90.6		%		70-130	26-AUG-21
1,1,2,2-Tetrachloroetha	ane		97.9		%		70-130	26-AUG-21
1,1,1-Trichloroethane			107.7		%		70-130	26-AUG-21
1,1,2-Trichloroethane			97.3		%		70-130	26-AUG-21
1,1-Dichloroethane			81.5		%		70-130	26-AUG-21
1,1-Dichloroethylene			111.6		%		70-130	26-AUG-21
1,2-Dibromoethane			88.8		%		70-130	26-AUG-21
1,2-Dichlorobenzene			95.8		%		70-130	26-AUG-21
1,2-Dichloroethane			105.9		%		70-130	26-AUG-21
1,2-Dichloropropane			106.1		%		70-130	26-AUG-21

Workorder: L2630993 Report Date: 31-AUG-21 Page 9 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5570244								
WG3604949-1 LCS 1,3-Dichlorobenzene			102.4		%		70.400	00 1110 04
			102.4		%		70-130	26-AUG-21
1,4-Dichlorobenzene Acetone			_		%		70-130	26-AUG-21
			112.6 102.3				60-140	26-AUG-21
Benzene					%		70-130	26-AUG-21
Bromodichloromethane			117.3		%		70-130	26-AUG-21
Bromoform			87.9		%		70-130	26-AUG-21
Bromomethane			95.0		%		60-140	26-AUG-21
Carbon tetrachloride			105.5		%		70-130	26-AUG-21
Chlorobenzene			96.0		%		70-130	26-AUG-21
Chloroform			111.0		%		70-130	26-AUG-21
cis-1,2-Dichloroethylene			103.4		%		70-130	26-AUG-21
cis-1,3-Dichloropropene			107.7		%		70-130	26-AUG-21
Dibromochloromethane			95.3		%		70-130	26-AUG-21
Dichlorodifluoromethane			58.7		%		50-140	26-AUG-21
Ethylbenzene			101.7		%		70-130	26-AUG-21
n-Hexane			110.9		%		70-130	26-AUG-21
m+p-Xylenes			104.6		%		70-130	26-AUG-21
Methyl Ethyl Ketone			104.8		%		60-140	26-AUG-21
Methyl Isobutyl Ketone			96.9		%		60-140	26-AUG-21
Methylene Chloride			107.9		%		70-130	26-AUG-21
MTBE			97.9		%		70-130	26-AUG-21
o-Xylene			99.3		%		70-130	26-AUG-21
Styrene			98.7		%		70-130	26-AUG-21
Tetrachloroethylene			101.3		%		70-130	26-AUG-21
Toluene			99.7		%		70-130	26-AUG-21
trans-1,2-Dichloroethylen	ie		115.9		%		70-130	26-AUG-21
trans-1,3-Dichloropropen	е		103.5		%		70-130	26-AUG-21
Trichloroethylene			99.7		%		70-130	26-AUG-21
Trichlorofluoromethane			100.7		%		60-140	26-AUG-21
Vinyl chloride			81.3		%		60-140	26-AUG-21
WG3604949-2 MB			_					
1,1,1,2-Tetrachloroethan			<0.50		ug/L		0.5	26-AUG-21
1,1,2,2-Tetrachloroethan	е		<0.50		ug/L		0.5	26-AUG-21
1,1,1-Trichloroethane			< 0.50		ug/L		0.5	26-AUG-21

Workorder: L2630993 Report Date: 31-AUG-21 Page 10 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R5570244	ı							
WG3604949-2 MB			0.50		//		0.5	
1,1,2-Trichloroethane 1,1-Dichloroethane			<0.50		ug/L		0.5 0.5	26-AUG-21
•			<0.50		ug/L			26-AUG-21
1,1-Dichloroethylene			<0.50		ug/L		0.5	26-AUG-21
1,2-Dibromoethane			<0.20		ug/L		0.2	26-AUG-21
1,2-Dichlorobenzene			<0.50		ug/L		0.5	26-AUG-21
1,2-Dichloroethane			<0.50		ug/L		0.5	26-AUG-21
1,2-Dichloropropane			<0.50		ug/L		0.5	26-AUG-21
1,3-Dichlorobenzene			<0.50		ug/L		0.5	26-AUG-21
1,4-Dichlorobenzene			<0.50		ug/L		0.5	26-AUG-21
Acetone			<30		ug/L		30	26-AUG-21
Benzene			<0.50		ug/L		0.5	26-AUG-21
Bromodichloromethane	!		<2.0		ug/L		2	26-AUG-21
Bromoform			<5.0		ug/L		5	26-AUG-21
Bromomethane			<0.50		ug/L		0.5	26-AUG-21
Carbon tetrachloride			<0.20		ug/L		0.2	26-AUG-21
Chlorobenzene			<0.50		ug/L		0.5	26-AUG-21
Chloroform			<1.0		ug/L		1	26-AUG-21
cis-1,2-Dichloroethylene			<0.50		ug/L		0.5	26-AUG-21
cis-1,3-Dichloropropene			< 0.30		ug/L		0.3	26-AUG-21
Dibromochloromethane			<2.0		ug/L		2	26-AUG-21
Dichlorodifluoromethan	е		<2.0		ug/L		2	26-AUG-21
Ethylbenzene			<0.50		ug/L		0.5	26-AUG-21
n-Hexane			< 0.50		ug/L		0.5	26-AUG-21
m+p-Xylenes			< 0.40		ug/L		0.4	26-AUG-21
Methyl Ethyl Ketone			<20		ug/L		20	26-AUG-21
Methyl Isobutyl Ketone			<20		ug/L		20	26-AUG-21
Methylene Chloride			<5.0		ug/L		5	26-AUG-21
MTBE			<2.0		ug/L		2	26-AUG-21
o-Xylene			<0.30		ug/L		0.3	26-AUG-21
Styrene			<0.50		ug/L		0.5	26-AUG-21
Tetrachloroethylene			<0.50		ug/L		0.5	26-AUG-21
Toluene			< 0.50		ug/L		0.5	26-AUG-21
trans-1,2-Dichloroethyle	ene		<0.50		ug/L		0.5	26-AUG-21

Workorder: L2630993 Report Date: 31-AUG-21 Page 11 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R557024	14							
WG3604949-2 MB							0.0	
trans-1,3-Dichloropro	pene		<0.30		ug/L		0.3	26-AUG-21
Trichloroethylene	_		<0.50		ug/L		0.5	26-AUG-21
Trichlorofluoromethar	ne		<5.0		ug/L		5	26-AUG-21
Vinyl chloride			<0.50		ug/L		0.5	26-AUG-21
Surrogate: 1,4-Difluor			100.5		%		70-130	26-AUG-21
Surrogate: 4-Bromofle	uorobenzene		71.4		%		70-130	26-AUG-21
WG3604949-5 MS 1,1,1,2-Tetrachloroetl	nane	WG3604949-	3 92.0		%		50-140	26-AUG-21
1,1,2,2-Tetrachloroetl			97.3		%		50-140	26-AUG-21
1,1,1-Trichloroethane			105.4		%		50-140	26-AUG-21
1,1,2-Trichloroethane			101.0		%		50-140	26-AUG-21
1,1-Dichloroethane			112.2		%		50-140	26-AUG-21
1,1-Dichloroethylene			107.7		%		50-140	26-AUG-21
1,2-Dibromoethane			92.2		%		50-140	26-AUG-21
1,2-Dichlorobenzene			94.9		%		50-140	26-AUG-21
1,2-Dichloroethane			108.1		%		50-140	26-AUG-21
1,2-Dichloropropane			106.9		%		50-140	26-AUG-21
1,3-Dichlorobenzene			101.6		%		50-140	26-AUG-21
1,4-Dichlorobenzene			114.1		%		50-140	26-AUG-21
Acetone			112.6		%		50-140	26-AUG-21
Benzene			101.6		%		50-140	26-AUG-21
Bromodichloromethar	ne		117.8		%		50-140	26-AUG-21
Bromoform			89.0		%		50-140	26-AUG-21
Bromomethane			92.9		%		50-140	26-AUG-21
Carbon tetrachloride			102.7		%		50-140	26-AUG-21
Chlorobenzene			96.8		%		50-140	26-AUG-21
Chloroform			111.3		%		50-140	26-AUG-21
cis-1,2-Dichloroethyle	ne		103.9		%		50-140	26-AUG-21
cis-1,3-Dichloroprope	ne		103.6		%		50-140	26-AUG-21
Dibromochlorometha	ne		98.0		%		50-140	26-AUG-21
Dichlorodifluorometha	ane		52.6		%		50-140	26-AUG-21
Ethylbenzene			102.3		%		50-140	26-AUG-21
n-Hexane			102.6		%		50-140	26-AUG-21
m+p-Xylenes			99.7		%		50-140	26-AUG-21

Workorder: L2630993 Report Date: 31-AUG-21 Page 12 of 13

Client: Trafalgar Environmental Consultants (Newmarket)

P.O. Box 93316

Newmarket On L3X1A3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R55702	244							
WG3604949-5 MS		WG3604949-						
Methyl Ethyl Ketone			103.7		%		50-140	26-AUG-21
Methyl Isobutyl Keto	ne		94.5		%		50-140	26-AUG-21
Methylene Chloride			107.4		%		50-140	26-AUG-21
MTBE			96.9		%		50-140	26-AUG-21
o-Xylene			99.8		%		50-140	26-AUG-21
Styrene			99.6		%		50-140	26-AUG-21
Tetrachloroethylene			102.2		%		50-140	26-AUG-21
Toluene			102.2		%		50-140	26-AUG-21
trans-1,2-Dichloroet	hylene		112.1		%		50-140	26-AUG-21
trans-1,3-Dichloropr	opene		103.9		%		50-140	26-AUG-21
Trichloroethylene			97.4		%		50-140	26-AUG-21
Trichlorofluorometha	ane		95.5		%		50-140	26-AUG-21
Vinyl chloride			77.2		%		50-140	26-AUG-21

Workorder: L2630993 Report Date: 31-AUG-21

Client: Trafalgar Environmental Consultants (Newmarket) Page 13 of 13

P.O. Box 93316

Newmarket On L3X1A3

Contact: Robb Hudson

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample

SRM Standard Reference Material MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Sample ID: L2630993-1 Client Sample ID: BH101

← -F2-	→←	_F3F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease———	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2630993-2 Client Sample ID: BH102

← -F2-	→←	_F3F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease———	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2630993-3 Client Sample ID: BH103

← -F2-	→ ←	—F3——◆4—F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	e →	← M	otor Oils/Lube Oils/Grease—	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2630993-4 Client Sample ID: BH104

← -F2-	→←	_F3F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease———	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2630993-5 Client Sample ID: BH208

← -F2-	→←	_F3F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease———	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2630993-6 Client Sample ID: BH210

← -F2-	→←	_F3F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease———	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Chain of Custody (COC) / Ana

Canada Toll Free: 18

Number: 20 - 892193
Page / of /

DOLLIO		Reports / Recipients						uested														
mpany:	TRAFALLAR 2. HUDSON	Select Re Merge	Report Format:				Routine [R] if received by 3pm M-F - no surcharges apply 4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum 3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum 2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum										AFFIX ALS BARCODE LABEL HER (ALS use only)					
						1 day [E] if received by 3pm M-F - 100% rush surcharge minimum																
reet:		or Fax Thudson Qd	TETELGE/PA	irennental	, Sa	me day	E2] if re	ceived b	y 10am	M-5 - 2	00% ru	sh surch	arge. Add	itional fe	es							
ty/Province:	Halan en et a Haga anta de la Albanda de La La Richard	Email 2	ans in Asia in Asia in A	in in the work	, Cen	- Company		-		-		-	ionuays a	IIO HOIFI	outine te							
ostal Code:		Merge QC SOLV SOLV SOLV SOLV Solv Sess below will appear on the final report Select Distr Email 1 or F Email 2 Email 3 t To VES NO with Report YES NO Select Invo Email 1 or F Email 2 Project Information AFE/Cost Cen Major/Minor C Requisition Location:				Date and Time Required for all E&P TATs: Odd-firmings infersion applies For all tests with rush TATs requested, please contact your AM to confirm availability.																
voice To Sa	ame as Report To		Invoice R	tecipients													ir AM to confirm availability.					
Co	ppy of Invoice with Report ☐ YES ☐ NO	Select In	voice Distribution: DE	MAIL MAIL	FAX	Analysis Request 1																
ompany:		or Fax			182	-		Indicate	Filtered	l (F), Pr	servec	(P) or F	illered a	nd Prese	erved (F/	P) below	T			REQUIRED		
ontact:		Email 2		274271 (37)		┨╩┃												+			3	
			Oil and Gas Required Fields (client use)						oá, h					000 8 85 2 0					(a 📗	Æξ	
LS Account # / Qu	uote# 2021			PO#		CONTAINERS	1 36	1,5	i prani ili		100		88 E - 3	1	4.				lā			
ob #:	nce: de: O Same as Report TO YES NO Copy of Invoice with Report NO Project Information Ount # / Quote #			Routing Code:		-181	エ							3 -		Sir da	V				ZA(
O / AFE:	K0	XX_I				18	d							4			40		18	5	STORAGE	
Inpany: RAFA LAR Recompany: Recomposition Recompositi	Location				man g	N		9		4	11.00							10	n l	S		
ALS Lab Work C	Order # (ALS use only): L26309	93 ALS CO	ntact: A.O.	Sampler: 🤇	š.H.	NUMBER	W.	v	440,0		Metals	25	U		せせ						ENDE	
ALS Sample # (ALS use only)			Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	out an entre	$\bar{\upsilon}$	ひ	7	エ	٤	<u>~</u>		E	185 -				- 1	3	X	
			24-Aug- 2	10.35	6-W	9	V	~	V		7		7							1	-	
$-\lambda$				10: 00	Gu	9	V	/		V			1								أليتا	
				9:45	CU	tt	1	1	V	V	\checkmark			1							44	
CONTROL OF THE PARTY OF THE PAR	TVACA C-AR L. Hu D S G W UI 6 - S W - Y 6 3 I Company address below will appear on the final report The as Report To YES NO Py of Invoice with Report YES NO Project Information INTERPORT NO Project Information INTERPORT NO Project Information INTERPORT NO Project Information INTERPORT NO Sample Identification and/or Coordinates (This description will appear on the report) BHIO CHOWN Samples (client use) Irom a Regulated DW System? NO Man consumption/ use?			11:10	60	li	V	V					1	フ	Ż						150	
					Chr	9	~		1	1			1	V	J	1				1		
5				10:45		111	V	-	1	7	7	-	7	~ /-	\mathcal{T}	+		+-1	1			
6	BH210			11:40	6W	11	V	V		~		$\checkmark +$	v	<i>u</i>	<u> </u>			+		-		
				i karan in	V(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1							4		44.				1-1		\dashv	نثند	
					North Straight	1 71	skee		313													
	R. Hu D S W UI G - SWI - Y G II Company address below will appear on the final report Same as Report To							8 30.8	12 78 1 a			270 L		140								
				AKI DAR DE ED			. 17						ijψ [‡]				300		48/4	de de la constante de la const		
																				T		
	<u> All Allen and American Indiana and American Am</u>				1			-+						-	$\neg \neg$					1	چنتیبند ۱۹۲۵ -	
						10000					SAME	I F RI	CEIP	LDEL	All S (ALS us	e only)					
		Notes / Specify Limits f	or result evaluation by selecti (Excel COC only)	ng from drop-down	below	07/3000//	ng Met			NONE	0	4CE	☐ IC	E PACKS		FROZEN		∏ co	OLING II	7.43.50.XX	BD.	
☐ YES Are samples for hu	□ NO Iman consumption/ use?	O. Reg. 153/	ou Table			100000000000000000000000000000000000000	er Cust	Commody Se	eals Int	act:]	YES	□N	100000	ificatio ample	Custod	y Seals] YES Intact: ER TEMPI] YES		
passes passes										164								e only)	CONTRACTOR OF THE PERSON	_	ř	

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

Dil

APPENDIX D QUALIFICATIONS OF THE ASSESSOR

Qualifications of the Site Assessor:

Robb Hudson, P.Eng., QP_{ESA}

Robb Hudson, P.Eng., has over thirty years of experience in the environmental engineering field.

Mr. Hudson is a registered profession engineer in the provinces of Ontario, Nova Scotia, Manitoba and Alberta. He also holds the designation Qualified Person (QP_{ESA}) as defined in O.Reg. 153/04.

Mr. Hudson has been involved with Phase I and Phase II Environmental Site Assessments of residential, commercial, and industrial properties in Ontario, New Brunswick, Nova Scotia, Prince Edwards Island, Newfoundland, Manitoba and Alberta.

Mr. Hudson has been thoroughly trained to conduct Phase I Environmental Site Assessments in accordance with the *Canadian Standards Association (CSA) Standard Z768-01-Phse I Environmental Site Assessment* (published in November 2001). Typically, Mr. Hudson conducts/reviews Phase I Environmental Site Assessments on a monthly basis. To date, Mr. Hudson has researched/prepared/reviewed more than 500 Phase I ESA reports.

Mr. Hudson has supervised soil remediation programs and completed environmental compliance reports for residential and commercial properties in all of the above noted provinces.

Rob Hudson obtained a Bachelor of Engineering Science (B.E.Sc) degree in Civil Engineering from the University of Western Ontario, in London, Ontario in 1982. He obtained a Master of Business Administration (M.B.A.) degree from York University, in Toronto, in 1984.

Mr. Hudson founded Trafalgar Environmental Consultants in 2015, following 30 years of progressive experience in the retail petroleum, construction and environmental consulting fields.

STATEMENT OF GENERAL CONDITIONS AND LIMITATIONS

1. OUR STANDARD OF CARE

Trafalgar Environmental Consultants (TEC) has conducted the work as detailed in the scope of work contained in the TEC proposal and performed the environmental work requested by the Client in accordance with generally accepted engineering or environmental consulting practices. No other warranty, expressed or implied, is made by TEC.

2. BASIS OF REPORT

The Report has been prepared for the specific site, design criteria, objectives and purpose that were described to us by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the document are only valid to the extent that there has been no material alteration to or variation from any of the said descriptions provided to us unless we are specifically requested by the Client to review and revise the Report in light of such alteration or variation.

3. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this Report which is of a summary nature and is not intended to stand alone without reference to the instructions given to us by the Client, communications between us and the Client, and to any other reports, writings, proposals or documents prepared by us for the Client relative to the specific site described herein, all of which constitute the Report. IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS, CONCLUSIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. WE CANNOT BE RESPONSIBLE FOR THE USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

4. REPORT USE - THIRD PARTY RELIANCE

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client, NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THE WRITTEN CONSENT OF TEC. WE WILL CONSENT TO ANY REASONABLE REQUEST BY THE CLIENT TO APPROVE THE USE OF THIS REPORT BY OTHER THIRD PARTIES AS "APPROVED USERS". It should be understood that a standard charge for authorizing release of this report, or any part thereof, may be levied by TEC on the third party, prior to the release of the Report, or any part thereof, for the purpose of covering administrative, legal and engineering fees. The contents of this Report remain our copyright property and we authorize only the Client and Approved Users to make copies of the Report only in such quantities as are reasonably necessary for the use of the Report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make the Report, or any portion thereof, available to any party without our written permission. ANY USE WHICH A THIRD PARTY MAKES OF THE REPORT, OR ANY PORTION OF THE REPORT, ARE THE SOLE RESPONSIBILITY OF SUCH THIRD PARTIES. WE ACCEPT NO RESPONSIBILTY FOR THE DAMAGES SUFFERED BY ANY THIRD PARTY RESULTING FROM UNAUTHORIZED USE OF THE REPORT.

5. REPORT INTERPRETATION

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgemental in nature and even comprehensive sampling and testing programs, implemented with the appropriate equipment by experienced personnel, may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an *inherent risk* that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points or locations investigated and all persons making use of such documents or records should be aware of, and accept, this risk. Some conditions are subject to change over time and those making use of this Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. Where special concerns exist, of the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of this Report.
- b) **Reliance on the Information Provided:** The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of inspections and on the basis of information provided to us by other parties. We have relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, we cannot accept responsibility for any deficiency, misstatements or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of persons providing information.

6. CLIENT INDEMNITY

Environmental consulting projects have the potential to, and may, cause an accidental leak, release, or discharge of contaminants into the environment (an "Accidental Release"). In consideration of the provision of the services by us, which are for the Client's benefit, the Client agrees to hold harmless and to indemnify and defend TEC and our directors, officers, servants, agents, employees, workmen and contractors (hereinafter referred to as the "Company") from and against any and all claims, losses, damages, demands, disputes, liability and legal investigative costs of defence, whether for personal injury, including death, or any other loss whatsoever, regardless of any action or omission on the part of the Company, that result from an Accidental Release of pollutants or hazardous substances occurring as a result of carrying out this Project. This indemnification shall extend to all Claims brought or threatened against the Company under any federal or provincial statute and municipal by-law as a result of conducting work on this Project. In addition to the above indemnification, the Client agrees not to bring any claims against the Company in connection with any of the aforementioned causes except for those involving our own negligence.

7. CONTROL OF WORK AND SITE SAFETY

We are responsible only for the activities of our employees on the jobsite. The presence of our personnel on the site shall not be construed in any way to relieve the Client or any contractors on site from their responsibilities for site safety. THE CLIENT ACKNOWLEDGES THAT THEIR REPRESENTATIVES, CONTRACTORS OR OTHERS RETAIN CONTROL OF THE SITE AND THAT WE NEVER OCCUPY A POSITION OF CONTROL AT THE SITE. The Client undertakes to inform us of all hazardous conditions, or other relevant conditions of which the Client is aware. The Client also recognizes that our activities may uncover previously unknown hazardous conditions or materials and that such a discovery may result in the necessity to undertake emergency procedures to protect our employees as well as the public at large and the environment in general. These procedures may well involve additional costs outside of any budgets previously agreed to. The Client agrees to pay us for any expenses incurred as the result of such discoveries and to compensate us through payment of additional fees and expenses for time spent by us to deal with the consequences of such discoveries. The Client also acknowledges that in some cases the discovery of hazardous conditions and materials will require that certain regulatory bodies be informed and the Client agrees that notification of such bodies by us will not be a cause of action or dispute.

8. SERVICES OF SUBCONSULTANTS AND CONTRACTORS

The conduct of engineering and environmental studies frequently requires hiring the services of individuals and companies with special expertise and/or services which we do not provide. We may arrange the hiring of these services as a convenience to our Clients. As these services are for our Client's benefit, the Client agrees to hold the Company harmless and to indemnify and defend us from all claims arising through such hirings to the extent that the Client would incur had he hired those services directly. This includes responsibility for payment for services rendered and pursuit of damages for errors, omissions or negligence by those parties in carrying out their work. In particular, these conditions apply to the use of drilling, excavation, contracting and laboratory testing services.

9. INDEPENDENT JUDGEMENTS OF CLIENT AND OTHERS

The information, interpretations and conclusions in the Report are based on our interpretation of conditions revealed through limited investigations or inspections conducted within a defined scope of work. We cannot accept responsibility for independent conclusions, interpolations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes, but is not limited to, decisions made to either purchase or sell land.